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ABSTRACT

The Lamb shift in atomic H is calculated from the point of view of a generally
covariant unified field theory - the Einstein Cartan Evans (ECE) field theory. The method
adapted is to use an averaged vacuum potential that reproduces the g factor of the electron to
experimental precision. This averaged potential is deduced from the Thomson radius of the
photon and is used in the Schr.c;dinger equation of atomic hydrogen (H) to increase the kinetic
energy operator. The effect on the total energy levels of the H atom is then calculated and the
Lamb shift deduced analytically without perturbation theory. It is found that the averaged
vacuum energy affects each orbital of H in a different way through its effect on the electron
proton distance. This effect is measured by distance r (\mc that is found by comparison with
the experimental Lamb shift between the 2s and 2p orbitals of H. This is a generally

applicable method that removes the problems of quantum electrodynamics.
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1. INTRODUCTION
The Einstein Cartan Evans (ECE) unified field theory {1-12} is generally
covariant in all its sectors and is a causal and objective field theory of physics. As such it is
diametrically the opposite of quantum electrodynamics (QED), the method usually used to
calculate the Lamb shift in atomic hydrogen (H) {13 - 15}. The QED method relies on hidden
assumptions and adjustable parameters, so it is not a first principles theory. QED is a theory
of special relativity which at the same time acausal and subjective, and violates special
relativity, being therefore internally inconsistent on a basic level. The reason is that QED
assumes that a point electron radiates a virtual photon that does not obey the Einstein
equation of special relativity and cannot be observed experimentally. The virtual photon
produces a virtual electron and a virtual positron, which again violate special relativity. These
virtual electrons and positrons can go backwards or forwards in time, travel at any speed, and
soon {13 - 15}. The point electron is affected by these virtual entities and is said to be
shielded. These ideas emerged from the fact that QED is based on the Dirac equation of an
electron and the equation of the quantized electromagnetic field, in which the potential is
subject to second quantization and expressed in terms of creation and annihilation operators.
A degree of precision is claimed for QED, but this is unjustifiable, because it is based on
methods used to remove singularities in a perturbation method. These methods include mass
re-normalization, dimensional regularization, and re-normalization of singularities introduced
by perturbation theory; the arbitrary cut off of a series expansion, and the use of thousands of
terms, usually put into diagrammatic form and known as Feynman diagrams. The result of the
QED Lamb shift calculation is expressed in terms of the fine structure constant ( d ). The
latter’s precision is however determined by its least precise constant, the Planck constant h.
~1

The experimentally measured relative standard uncertainty of h { \(, lis1.7x 10 and
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this is orders of magnitude greater than that of the electron g factor, which is 1.5 %o



So QED can never produce the g factor to a precision greater than that of the Planck constant.
In Section 2, the ECE theory is used to calculate the Lamb shift in atomic H in the
non-relativistic limit described by the Schrgdinger equation. The average effect of the
vacuum is deduced from the Thomson radius of the photon. This method has previously been
used in ECE theory {1-12} to produce the g factor of the electron to the limit of precision of
the fine structure constant (the precision determined by h as just argued). The g factor of the

electron is increased in ECE theory as follows:
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To calculate the Lamb shift with the Schradinger equation, the kinetic energy operator is
increased by the same amount as in Eq. ( 1. ). This vacuum effected kinetic energy
operator, when used in the Schr'(;dinger equation of the H atom, produces tiny changes in the
electron to proton distance in each orbital of the H atom. The change is different for each
orbital and is expressed in terms of the distance r (\l OC). The latter can be calculated
analytically without perturbation theory. This method is first shown to produce the basic
feature of the Lamb shift in atomic H, and is then refined analytically.

In Section 3 the results are graphed and used to illustrate the fact that this method is a
generally applicable one, capable of being refined almost indefinitely by contemporary

analytical and computational software.

2. A SIMPLE NON-RELATIVISTIC CALCULATION OF THE LAMB SHIFT

The interaction of the electromagnetic field with the hydrogen atom is in ECE theory
a problem of causal general relativity. In’the non-relativistic quantum approximation to ECE
theory {1-12} the electron and proton are bound together by a Coulomb potential and

described by the well known Schr.(;dinger equation of atomic H { V7] }:
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Here X is the reduced Planck constant, " is the reduced mass, -¢ is the charge on the
electron, e is te charge on the proton, €° is the vacuum permittivity and r is the proton to

electron distance and radial coordinate of the spherical polar system of coordinates. The total

energy levels E of the H atom are given by the Schrodlnger equation as:
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and where OL is the fine structure constant
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Here n is the principa\ quantum number { |7} and c is the speed of light in a vacuum. The
Schro'dinger equation produces the result:

e(as)- c(3p) - ?ﬁ et = )

i.e. the energy levels of the 2s orbital and the three 2p orbitals are the same, i.e. degenerate.

The Dirac equation of special relativistic quantum mechanics refines this result { \8 } to
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show that:
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The observed Lamb shiftis { |1 }:
. = 0.0353 ca”
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and from Egs. ( (v ) and ( 8 ) produces a relative change:
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i.e. about twe parts in ten million. The Lamb shift has no explanation in the Schr.(;dinger and
Dirac equations of the unperturbed H atom. The generally accepted explanation for the Lamb
shift was first given by Bethe { \ Q } as the effect of the quantized electromagnetic field’s
zeroth energy level. This is known somewhat misleadingly as the effect of the vacuum. More
precisely it is due to the way in which the electromagnetic field is quantized in terms of
harmonic oscillators. In order to approach this problem in ECE theory an electromagnetic
potential is used to increase the value of the kinetic energy operator of Eq. ( Q ). This
method was first used {1~ \Q} to calculate the g factor of the electron, and is based as follows

on the Thomson radius of the photon.

The basic hypothesis is that: (
()
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where A \‘ﬁ> is the classical “vacuum potential”, a term that is intended to denote the average

effect of the electric and magnetic fields that exist in the absence of any photons. This idea
comes from the fact that the lowest (or zero’th) energy level of the electromagnetic field

quantized as a harmonic oscillator is

E = n & %Bﬁ "‘<“§

where {Co is the quantum of energy and n the number of photons. It is seen that there is
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an energy:
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when there are no photons (n = 0). This means { |~ } that there are fluctuating electric and
magnetic fields present when there are no photons present. The linear momentum associated

with these “vacuum fields” is denoted () (\‘“C> , and the linear momentum associated

with/f(/) is {’\/\, , where:
W = L — <‘5>

C

is the wave-number magnitude. These ideas come from the fact that in quantum mechanics
{ 1 } the zero’th energy eigenvalue of the harmonic oscillator is non-zero.
The magnitude of A(V%ay be expressed in terms of the magnetic flux density

Q)
magnitude B associated with the quantum of energy 1 G { |~ (d}. Thus
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where/4' is the vacuum permeability defined by:
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and where Ar is the surface area associated with the energy quantum /’E/CJ . This is obtained

from the Thomson radius:
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and so the surface area of the sphere with this radius is:
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Thus:
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The fine structure constant is therefore defined by: 3
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The average value of A is now found by averaging over the polar angles: recall that the

surface area of a sphere of radius r is:
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This procedure means that the quantum of momentum ‘E/\( with Thomson radius ) I |58
(<)

is averaged over 9 and of the spherical polar coordinate system, i.e. A

is averaged over all possible orientations. The result is Eq. ( \ 0 ), which comes from a

quantized electromagnetic field.

Another method of justifying the factor 447 is to consider the magnetic flux

associated with the quantum of electromagnetic energy{ o {1-12}:
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it is known { [; } that the quantum of magnetic flux can also be expressed as:
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From Eq. ( \© ) we may expresﬁ< ) as follows:
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where E is the zero’th point energy associated with the quantized electromagnetic field.
Now extend Eq. ( @A) to energy momentum:
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It is seen that this is a type of minimal prescription { {3 = \S } that accounts for the vacuum

energy. More accurately, vacuum energy should be termed space-time energy. The effect of
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So the Dirac equation of the electron changes to {1-12}:
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This is equivalent to an increase in the Dirac matrix:
) Y- 3
> (14 d )
In QED this increase is denoted:
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where .[\ is a convergent vertex { \3- IS}, a kind of adjustable parameter.
The well known factor 2 of the Dirac theory of the electron interacting with a

classical electromagnetic field originates geometrically in the relation between the Minkowski
~

metric '\ and the Dirac matrices { \3 }:
h| V\ = XY+ YN - (BS>

Both Dirac matrices change according to Eq. ( 35 ), 1.e.:

SO:
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and the g factor of the electron, g = 2, changes to:
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Note that this result happens to agree exactly to first order in O( with the well known

calculation of Schwinger { B } in QED:
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and gives a small correction to second order in d_
The Schrodinger equation ( a\ ) is changed therefore by the same factor,

appearing in the kinetic energy operator. The latter is defined by the classical:

and the operator equation:
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So the kinetic energy operator is:

This appears as the square of momentum, so: 3 3
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Our method of calculating the Lamb shift is therefore based on the same method as used to



calculate g of the electron {1-12}. Before proceeding, we discuss the precision of the ECE

method for g of the electron.

From ECE theory: p)
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The fundamental constants of physics are agreed upon by treaty in standards laboratories such

as www.nist.gov of the US National Institute for Standards and Technology. This site gives: (L\—é)
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with relative standard uncertainties. By treaty:
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is taken as exact. With a sufficiently precise value of qT :
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Using these values in Eq. ( \-\-9 gives:
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where the result has been rounded off to the relative standard uncertainty of h, the least
precisely known constant of & . Thus d\ cannot be more precisely known than h. The
latter is determined by an experimental method described on www.nist.gov. Now use Eq.

( S \-\—) in Eq. ( \-\-g) to give the theoretical value of g from ECE theory:

3 (E(Q _— @1313@0\)_——— (h‘)

The experimental value of g is known to much greater precision than h, and is:
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It is seen that the difference is:
™
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which is about the same order of magnitude as the experimental uncertainty in h. It is
concluded that ECE gives ‘) as precisely as the uncertainty of h will allow. The latter is not

given consistently in the literature. For example, a much used text such as Atkins { I I

7 (arks) - 6624 % oY T
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without uncertainty estimates. This is very different (fourth decimal place){aw the NISF

gives it as:

value. Despite this, Atkins { \"{ }gives:
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which is different from Eq. ( L ) only in the eighth decimal place. This is severely self-

inconsistent. Atkins gives the g factor of the electron as:
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which is different from the NIST value in the eighth decimal place, while it is claimed at

NIST that g from Eq. ( 7) is accurate to the twelfth decimal place. This is a another
1

major inconsistency between well used current sources. Ryder { B } gives:

3((2‘3&‘5 - ), 23143048 ——(s:>

which is different form the NIST value in the tenth decimal place, and Ryder claims that QED
gives g to this same precision. As we have seen, this cannot be true because the uncertainty of
any theoretically calculated g is limited by the uncertainty on h. In summary:
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and there is little doubt that other textbooks and sources will give further different values of

g. So where does this finding leave the claims of QED? The Wolfram site claims that QED

gives g using the series: o ) g
Aty
(1 ““M N
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which is derived from thousands of Feynman diagrams (sic). However, the various terms in

eq. ( St ) come from all the assumptions listed in the introduction, and so this cannot be a
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first principles theory despite its elaborate nature.
An even worse internal self-inconsistency emerges because at NIST the fine structure

constant is claimed to be:
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both experimentally and theoretically. The first thing to note is that this claim, Eq ( 54 ), 18
different in the eighth decimal place from Eq. ( S\-\- ), which is calculated from NIST’s own
fundamental constants, Egs. (\'\'L) to ( > \ ). So the NIST website is internally inconsistent
to an alarming degree, because it is at the same time claimed that Eq. ( Sa ) is accurate to
the tenth decimal place. From Eq. ( \-\-—() it is seen that h at NIST is accurate only to the sixth
decimal place, which limits the accuracy of d to this, i.e. ten thousand times less precise
than claimed. The source of this very large internal discrepancy must therefore be found. The
theoretical claim for the fine structure constant at NIST comes from QED, which is described
as a theory in which an electron emits a virtual photon, which emits virtual electron positron
pairs. The virtual positron is attracted and the virtual electron is repelled from the real
electron. This process results in a screened charge, and the fine structure constant in QED is
the square of an entity known as the completely screened charge, a mathematical limiting
value. This is defined as the limit of zero momentum transfer or in the limit of infinite
distance. At high energies the fine structure constant drops to 1 / 128, and so is not a constant
at all. It certainly cannot be claimed to be precise to the relative standard uncertainty of Eq.

( Sa ), taken directly from the NIST website itself (www.nist.gov).

The experimental claim for the fine structure constant at NIST comes from the use
of the quantum Hall effect combined with a calculable cross capacitor to measure the

standard resistance. The immediate problem with this method is the use of the von Klitzing
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which is clearly limited once more to the accuracy of h. The latter is found at NIST by a
different experimental method, giving Eq. ( W1 ). The accuracy of the charge on the proton is
only ten times better than h, so R  cannot be more accurate than h. If QL were really as
accurate as claimed in Eq. (S i\ ),thenR and h/ ea would also be known to this accuracy,
conflicting with Egs. (\'ﬂ ) and ( \*8 ) of the same NIST website.

In view of these serious problems it is considered that the claim of QED to
reproduce the Lamb shift to high accuracy is also in complete doubt, as are all the so-called
“precision tests” of QED, for example the g of the electron, the Lamb shift, positronium and
so forth. The only sensible way forward is to calculate the Lamb shift in terms of r(vac) and to
find r(vac) from the experimental value of the Lamb shift, making no unjustifiable claims of
precision. This aim is achieved as follows on the non-relativistic level and can be
considerably refined in future work.

and (W)
The distance r(vac) is defined frem Eq. ( D\ by:
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i.e. the effect of the vacuum potential is considered to be a shift in the electron to proton

distance for each orbital. To first order in 0( :
\ { ; p
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Using the normalization given by Atkins { n }we consider five of the H orbitals:

—(63)
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In spherical polar coordinates the laplacian operator is { K }:
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Computer algebra may now be used to evaluate r(vac) for each orbital. We first consider for

the sake of illustration a special case of the 2p 2 orbital, the maximum:

es B = L o (6%§

It is found that:
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This checks that the method gives the correct qualitative result. A remarkable simplification

occurs to show that the Lamb shift is proportional to:
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More generally the Lamb shift will depend on the polar coordinates. Despite its huge

complexity, QED is unable to give these detailed results, which are found by dispensing with
perturbation theory and virtual particles, and calculating analytically. Finally the constant of

proportionality in Eq. ( 1 l) has to be found. The potential energy of the H atom in wave-

- _ _ (1)
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before the vacuum perturbation and is:
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after the vacuum perturbation. So the change in potential energy is positive:
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Note that the factor in eq. (75) is obtained from the basic assumption used in this paper, that

the Schrodinger equation of H with radiative correction, to first order in 0( :

e\ - = e~ ()
2

A Wi Cef
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It is assumed that r(vac) is small so the wave-function in Eq. ( M ) is to a very good

approximation the wave-function of H in the absence of the radiative correction.
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and from the above calculation we obtain: {/ ‘ (?o
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The change in potential energy is therefore:
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and the change in total energy is:
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which is the Lamb shift in atomic H. Here r is:
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Eq. (18) implies that:
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so in this approximation, Eq. ( g\-\— ) becomes: ( 6
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where the standard Compton wavelength is:
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Thus we arrive at:
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This is a sensible result because the classical electron radius is: Y o
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and the Bohr radius is:
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so the radiative correction perturbs the electron orbitals by about ten times the classical radius
of the electron, and by orders less than the Bohr radius. This is a remarkable result because it

shows why the Lamb shift is constant as observed. For a given orientation defined by:
i _ (0\1)
(65 é = 1

the shift is determined completely by 1 / r within a constant of proportionality
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The next section discusses the angular dependence of the Lamb shift and gives some
graphical results. Finally in this section, consideration is given to an averaged 2p orbital

defined by:

Vi
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within a normalization factor. The Lamb shift is then evaluated from:
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The difference in these values gives the Lamb shift between the 2s state in H and the 2p state

averaged as in Eq. ( c\\\—), with all angular dependence removed. ’\—)\*S QBO\X\-\
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3. ANGULAR DEPENDENCE OF THE LAMB SHIFT AND GRAPHICAL RESULTS
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3. ANGULAR DEPENDENCE OF LAMB SHIFT AND GRAPHICAL RESULTS

In the following we present two further models for calculating the Lamb shift with averaged

2p orbitals of H. According to Eq. (62) the Lamb shift follows from

V'L - = (”T“ho X
YT XY
(99)
with
1 1
X=<=~—"
Y U"f’k‘(u%) \ (100)

The natural way would be to use the full angular dependence of the wavefunctions (Eqs. 63-
67) in these equations. However, applying the full laplacian operator (68) to the 2p orbitals
and inserting the results into (99) gives the same result as for the 2s orbital, namely Eq. (70).
The detailed computer algebra calculation shows that the 6 and ¢ dependencies after applica-
tion of the laplacian are the same as for the wavefunctions itself. So the angular dependence
cancels out in Eq. (99). The remaining factors lead to Eq. (70) again. In the following we in-
spect two alternative methods of calculating the Lamb shift by averaged 2p orbitals.

First method

We use the 2p mean wavefunction defined by

N
(101)

The difference wave function responsible for the experimentally observed Lamb shift is then

given by

/\f/ f= ’Y(Zs) - <'1/(7-p)>

(102)



By inserting (63)-(67) this leads to
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The normalization factors were omitted because they cancel out in (99). We see that the angu-

lar dependence has disappeared, no further averaging is needed.Evaluation of (99) gives
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With
AV = -w

X (105)

we obtain

AE = - 1)%: - N e 1 r Jar+1ar
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Setting AE to the experimental value of 0.0353 cm™ (or 4.372:10°° eV = 0.1607-10° Hartree)

yields the effective radius values (in Bohr radius ag):

r,= 4 63 «

B (1072)
r’L = }-Z} a

B (107b)

Compared to the result (83) this is very small, the Lamb shift is highly overestimated in this
appromimation. The reason probably is that Eq. (99) is set up for the difference wave function
y. Although (99) is linear in v, it is not in handling the vacuum effect radius r(vac) as can be

seen from Eq. (100). So we work out an alternative method.
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Second method

The second method uses separate expressions of the effects of r(vac) for each orbital y(2s)

and <y(2p)> in correspondence to Egs. (69-71):

Vl«% (25)= - 3-3‘-‘33 x. '\f'(z“)

(108)

- - Yo

with averaged orbitals <y(2p)> asd defined by (101). For Eq. (108) we can directly take over
the result of Eq. (70):

Yq:"i‘“ i(%'%\)

(109)
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(110)
Evaluation of (109) leads to
5 A (4- 3 -
(11D
The difference term for the 2s-2p Lamb shift then is
(112)

This is exactly resuit (72) which was obtained for y(2p,) with cos 8 = 1. Therefore the Lamb
shift for this angular averaged model is the same as for the 2p, orbital in direction of maxi-

mum amplitude.

Now we discuss the radial dependence of some characteristic terms in graphical representa-

tion. All figures are in atomic units.The kinetic energy distribution

2y,
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of the 1s orbital is shown in Fig. 1a. There is a zero transition for =2. The corresponding
transition also appears in the inverse radius difference (100). This can be seen from Fig. 1b
where this difference is plotted, showing the effective potential of the radiative effects. The r

dependence of the vacuum interaction radius r(vac) itself can be calculated from Eq. (69):

Lar ¢ L

r(vaa) (4!) = -

L
rtifa-24 (114)

with

= Tac
F=%

This function is graphed in Fig. 1c. r(vac) is positive for r<2 and negative above. The zero

(115)

crossing corresponds to Figs. 1a and 1b. A negative radius r(vac) means that there is a de-

crease in potential instead of increase due to vacuum effects.

The same three graphs are shown for the 2s orbital in Figs. 2a-c. Here only the zero in kinetic
energy at r=8 is also occurring in the effective potential. r(vac) is a second degree rational

function.of r, similar to the 1s case:

1
r(wc) ('Lt) = _Jar-r
v+ AbBa -8
p ® (116)
Its sign coincides with that of the effective potential of Fig. 2b.

Corresponding results apply to the 2p, orbital (Figs. 3a-c). Here both zeros in kinetic energy
are visible in the effective potential of r(vac). Compared to the 2s orbital, the vacuum interac-

tion radius itself has an analytical dependence of one degree higher in r:
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All r(vac) functions of the three orbitals have in common that they are positive in regions
where the wave function has significant values which can be seen from the kinetic energy
distribution diagrams. This means that effectively energy is transferred from the quantum
background to the atom. In the outer regions there is a small energy transport in the opposite

direction.

Finally we present the difference terms between 2s and 2p which make up the experimental
Lamb shift energy difference. Fig. 4 shows the difference of the potential energy terms (Figs.
2b, 3b). There is a positive energy contribution near to the core which effects the positive sign
of the Lamb shift energy. According to Eq. (84) it has a simple hyperbolic form. The differ-
ence of the radii itself is graphed in Fig. 5. The absolute values are small compared to the
atomic radius, representing the fact that the Lamb shift is a relative energy correction of the

order 107,

We conclude that in this paper all important aspects of the Lamb shift could be made plausi-
ble on base of ECE theory. Calculations were carried out in the non-relativistic limit by using
the Schrédinger equation of atomic Hydrogen. Angular dependent effects play no significant

role.
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Fig. la. Kinetic energy radial distribution function of H 1s orbital.
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Fig. 1b. Difference term of potential energy for H 1s orbital.
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Fig. 1c. Vacuum interaction radius r(vac) for H 1s orbital.
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Fig. 2b. Difference term of potential energy for H 2s orbital.
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Fig. 3a. Kinetic energy radial distribution function of H 2p, orbital.
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Fig. 3b. Difference term of potential energy for H 2p, orbital.
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Fig. 3c. Vacuum interaction radius r(vac) for H 2p, orbital.
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Fig. 4. Difference of potential terms for Lamb shift 2s-2p,.
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