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Abstract

Using Einstein Cartan Evans (ECE) unified field theory the conditions are
deduced under which a Faraday disk generator may be used to demonstrate a
resonant peak of power due to the spin connection used in ECE theory (spin
connection resonance or SCR). The analytical analysis is supported by a Fara-
day disk design with variable spin speeds which has recently demonstrated
the existence of SCR experimentally. Three principal types of resonances have
been identified.
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14.1 Introduction

During the course of development [1–10] of ECE theory the phenomenon of
spin connection resonance (SCR) has been developed (for example papers
63 and 94 of the ECE series on www.aias.us) and shown to be important
in the acquisition of electric power from space-time through the Cartan tor-
sion. This source of electric power is well known experimentally and was
demonstrated for example by Tesla [11] in several devices. Other groups have
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observed such effects [1–10] for over a hundred years, but as in the case of
the Faraday disk generator [12] the standard Maxwell Heaviside (MH) theory
does not have an explanation for them. Therefore there has been a tendency
to under-implement these potentially important devices despite their obvious
importance for the generation of electric power. In papers 43 and 44 of the
ECE series a straightforward explanation for the Faraday disk generator was
given in terms of the spinning of space-time and in Section 14.2 this explana-
tion is adapted to demonstrate analytically the possibility in the Faraday disk
generator of spin connection resonance induced by varying the speed of the
spinning disk. Further details and numerical evaluations are given in Section
14.3. In Sections 14.4 and 14.5 such a device is described experimentally and
suggestion is made for the improved control and engineering of devices that
take electric power from space-time using the Faraday disk design.

14.2 Analytical Theory

The theory of the Faraday disk was first developed with ECE theory in papers
43 and 44. They were based on the fundamental idea of ECE theory:

F = A(0)T (14.1)

in short-hand index-less notation [1–10]. Here F denotes the electromagnetic
field form and T the Cartan torsion form [13, 14]. The quantity cA(0) is a
fundamental voltage [1–10]. In the Faraday disk the torsion T is set up by
mechanical rotation. So the basic equations of the generator are:

F = A(0)T (mechanical) = d ∧ A + ω ∧ A (14.2)

where ∧ denotes wedge product and d∧ denotes exterior derivative. Here A
is the potential form of ECE theory [1–10] and ω is its spin connection form
[1–10, 13, 14]. The field equations of the system are based on the Bianchi
identity as developed by Cartan and are:

d ∧ F + ω ∧ F = R ∧ A, (14.3)

d ∧ F̃ + ω ∧ F̃ = R̃ ∧ A. (14.4)

The second equation is the Hodge dual of the Bianchi identity and was devel-
oped during the course of development of ECE theory. The field equations
can be reduced [1–10] to vector notation as used in standard electrical engi-
neering. They then become the following set of six equations for all practical
purposes in the laboratory.

∇ · B = 0 (14.5)
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∇ × E +
∂B
∂t

= 0 (14.6)

∇ · E =
ρ

ε0
(14.7)

∇ × B − 1
c2

∂E
∂t

= µ0J (14.8)

B = ∇ × A − ω × A (14.9)

E = −∇φ − ∂A
∂t

+ φω − ωA. (14.10)

The first four are the Gauss law, the Faraday law of induction, the
Coulomb law and the Ampère Maxwell law, the fifth and sixth are the
equations expressing fields in terms of the potentials and spin connection
scalar and vector. In these vector equations, expressed in S.I. units, B is
the magnetic flux density, E is the electric field strength, ρ is the charge
density, ε0 is the vacuum permittivity, J is the current density, A is the
vector potential, ω is the scalar connection, φ is the scalar potential and ω is
the vector connection. Details of this derivation are given in the ECE series
of papers and books (www.aias.us), notably in review paper 100.

The Bianchi identity (14.3) gives the homogeneous field equation in tensor
notation, and the Hodge dual identity (14.4) gives the inhomogeneous field
equation in tensor notation. The tensor equations are then written in the base
manifold, which is a four dimensional space-time with torsion and curvature.
The latter is expressed in the original field equations through the curvature
form R in index-less notation, the link between geometry and the electro-
magnetic field being expressed by the basic relation (14.2). The classical field
equations of electrodynamics therefore become field equations of general rel-
ativity, not field equations of special relativity, in which both torsion and
curvature are absent, and in which the space-time is a Minkowski space-time.
The MH field theory, in which the electromagnetic field is a nineteenth cen-
tury concept defined on a Minkowski frame of reference, is one of special
relativity. In ECE theory the electromagnetic field is the space-time geom-
etry itself within a factor A(0), where cA(0) is a primordial voltage. Finally
the two tensor equations in the base manifold are developed as four vector
equations, and the tensor relation between field and potential developed into
two further vector equations.

In paper 44 a complex circular basis [1–10] was used to define a rotating
potential set up by mechanically rotating the Faraday disk at an angular
frequency Ω in radians per second:

A(1) =
A(0)

√
2

(i − ij) eiΩt. (14.11)
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Its complex conjugate is denoted:

A(2) =
A(0)

√
2

(i + ij) e−iΩt. (14.12)

This is the key concept of the ECE explanation of the Faraday disk generator.
The real parts of A(1) and A(2) are the same and can be worked out with de
Moivre’s Theorem:

eiΩt = cos Ωt + i sin Ωt. (14.13)

The ECE concept is based on:

A = A(0)q (14.14)

where q is the Cartan tetrad [1–10]. The tetrad relevant to the Faraday disk
is:

q(1) = q(2)∗ =
1√
2

(i − ij) eiΩt. (14.15)

This concept is one of rotational general relativity, whereas the Maxwell
Heaviside (MH) theory is one of special relativity in a flat or Minkowski
space-time. It is well known that MH is unable to explain the Faraday disk
generator, whereas ECE explains it straightforwardly. It is clear therefore
that electrodynamics is part of ECE theory, a generally covariant unified
field theory (www.aias.us). Classical and quantum electrodynamics have been
extensively developed within ECE theory, and unified with other fundamental
fields, notably gravitation.

In the Faraday disk the mechanical spin sets up a rotational tetrad, which
is a rotation of space-time ITSELF. In paper 44 a special case of Eq. (14.10)
was used:

E = −∂A
∂t

− ωA (14.16)

in which φ was assumed to be zero and where A is generated by the magnet
of the Faraday disk generator, essentially as used by Faraday and reported
in his diary on Dec 26th 1831. The scalar spin connection in paper 44 was
assumed to be proportional to Ω, so the electric field strength is:

E(2) = E(1)∗ = −
(

∂

∂t
+ iΩ

)
A(2). (14.17)
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The real part of this expression is worked out with Eq. (14.13) and is:

E =
2√
2
A(0)Ω(i sin Ωt − j cos Ωt) . (14.18)

This electric field strength (in volts per meter) spins around the rim of the
rotating disk. As observed experimentally it is proportional to the product
of A(0) and Ω. An electromotive force is set up between the center of the
disk and its rim, as first observed by Faraday, and this emf is measured by a
voltmeter at rest with respect to the spinning disk.

Recently [15] there have been reports of a Faraday disk generator exhibit-
ing a powerful resonance effect hitherto unknown. The onset of this surge of
electric power occurs when the angular frequency of the spinning disk is time
dependent. At a sharply defined Ω the apparatus was observed to disintegrate
(explode). There is no explanation for this in standard electrical engineering,
which is based on the MH theory. In ECE theory it can be explained by
spin connection resonance provided that the rate of spin of the disk is time
dependent, i.e. its RPM increases so that:

∂Ω
∂t

�= 0. (14.19)

Use Eq. (14.8) with

∇ × B = 0 (14.20)

because in the Faraday disk generator:

B = B(0)k. (14.21)

Therefore

∂E
∂t

= −ε0J (14.22)

where:

E =
2√
2
A(0)Ω(i sin Ωt − j cos Ωt) . (14.23)

and in complex circular notation the electric field strength is:

E(2) = −∂A(2)

∂t
− iΩA(2). (14.24)
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Differentiating this equation with respect to time:

∂E(2)

∂t
= −∂2A(2)

∂t2
− iΩ

∂A(2)

∂t
− i

∂Ω
∂t

A(2) = − J
ε0

, (14.25)

so using Eq. (14.24) the equation for the potential is:

∂2A(2)

∂t2
+ iΩ

∂A(2)

∂t
+ i

∂Ω
∂t

A(2) =
J
ε0

. (14.26)

This is an Euler Bernoulli resonance equation [1–10, 16] under the
condition:

∂Ω
∂t

�= 0 (14.27)

i.e. that the RPM of the spinning disk increases. Thus:

∂2A(2)

∂t2
+ i

∂
(
ΩA(2)

)
∂t

=
J
ε0

. (14.28)

This is an undamped resonator equation if J is designed experimentally to
be periodic, for example:

J(2) = J (0) cos(Ω0t) e(2). (14.29)

Finally if the engineering design is such that:

∂Ω
∂t

>> Ω (14.30)

we obtain the equation:

∂2A(2)

∂t2
+ i

∂Ω
∂t

A(2) = J (0) cos(Ω0t) e(2). (14.31)

At resonance [1–10, 16]:

A(2) → ∞. (14.32)

The observed explosion of the Faraday disk generator [15] may be explained
in this way, i.e. the design must be a rapidly varying Ω and a periodic current
density coming from the emf set up between the center and rim of the rotating
disk.



14.3 Numerical Results 265

14.3 Numerical Results

The resonance equation (14.26) has to be solved nuerically. First we rewrite
the equation to two equations for the real and imaginary part of A(2), denoted
by Ar and Ai (considering only the time dependence):

d2Ar

dt2
− Ai

(
dΩ
dt

)
−
(

dAi

dt

)
Ω =

J

ε0
, (14.33)

d2Ai

dt2
+ Ar

(
dΩ
d t

)
+
(

dAr

dt

)
Ω = 0. (14.34)

In case of vanishing Ω these equations pass into

d2Ar

dt2
=

J

ε0
, (14.35)

d2Ai

dt2
= 0. (14.36)

These simple equations then have the general solutions

Ar =
J

2ε0
t2 + k1t + k2, (14.37)

Ai = k3t + k4. (14.38)

These are growing solutions in t, even if the constants k1 and k2 are chosen
as zero. Therefore the real part of the electric Field (see Eq. (14.24))

Er = Re

(
−∂A

∂t
− iΩA

)
= Ai Ω − dAr

dt
. (14.39)

will grow linearly by the mechanical rotation. The effect of Ω will be to overlay
an oscillatory structure to the simple solutions (14.37), (14.38).

For the numerical solution of Eqs. (14.33, 14.34) we define

Ω = α0 cos ω0t, (14.40)

J = J0 cos ωJ t. (14.41)

To make the simulations more realistic we have added a conductivity term
according to Ohm’s law:

Jcond = σ E (14.42)
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with a suitable conductivity value σ. Replacing J by J+Jcond in Eq. (14.26)
and selecting the real and imaginariy part again leads to

d2Ar

dt2
− Ai

(
dΩ
dt

)
−
(

dAi

dt

)
Ω =

J

ε0
+

σ

ε0

(
Ai Ω − dAr

dt

)
, (14.43)

d2Ai

dt2
+ Ar

(
dΩ
dt

)
+
(

dAr

dt

)
Ω = − σ

ε0

(
Ar Ω +

dAi

dt

)
. (14.44)

Equations (14.33,14.34) have been solved numerically. The results for a
moderate amplitude of mechanical rotation are shown in Figs. (14.1)–(14.3).
In Fig. (14.1) the real and imaginary part of the vector potential are graphed.
The real part grows quadratically as predicted by Eq. (14.37), with a super-
imposed oscillatory structure by the mechanical rotation Ω. The imaginary
part of the potential is purely oscillatory as are both time derivatives (Fig.
(14.2)). The most relevant quantity is the electric field, Eq. (14.39), which
describes the induction effect due to rotation. As can be seen from Fig. (14.3),
The real part of E grows linearly, despite of the oscillating potentials, only
in right-most part there is a very low undulation.

For a modified parameter set we chose similar values of mechanical and
current frequency, leading to a heterodyne effect in the time behaviour of
the potential (Figs. (14.4), (14.5)). The electrical field (Fig. (14.6)) is oscilla-
tory now. The imaginary part is practically zero because the model does not
contain any damping or energy dissipation terms.

There should be a resonance behaviour according to section 14.1. In Fig.
(14.7) the maximum electric field value within 60s simulated time has been
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plotted in dependence of the current frequency ωJ . There are minor max-
ima for ωJ values of 10/s and 20/s which correspond to the given rotational
frequency of ω0 = 10/s. Most significant is the increase of the maximum
amplitude for ωJ → 0. This means that a direct current gives the highest E
field value.

From electrical engineering it is known that the feedback of the electric
field to a current can be modeled by Ohm’s law, see Eq. (14.42). The resulting
Eqs. (14.43, 14.44) therefore lead to a reduction in current. We have repeated
the calculation for Fig. (14.3) with a conductivity term. The result (Fig.
(14.8)) shows that there is a limit of the E field strength, making the result
more realistic.

14.4 Dynamics of the Homopolar Generator

As described in ECE [1–10], torsion in space-time is electromagnetism. It has
further been proposed that Spin Connection Resonance (SCR) is also a crit-
ical part of ECE. The connecting evidence between both concepts is present
when a varying dΩ/dt is applied to a Faraday disk (Homopolar Generator).
Moreover, it will be shown that the varying spin connection (identified with
dΩ/dt �= 0) produces additional accelerations to electrons hereto assumed to
be ignored under random collisions and generalized to drift velocity.

The accelerative state of a rotating reference frame is analyzed to the
application of moving electrons. As shown in a standard mathematical dictio-
nary of equations [17], a body in acceleration with a rotating reference frame
experiences the rotational operator
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R ≡
(

d

dt

)
body

+ Ω × . (14.45)

The velocity in the rotating frame of space is

vspace = Rr =
dr
dt

+ Ω × r (14.46)

and the equation expanded to acceleration in space is

aspace = R2r =
(

d

dt
+ Ω×

)2

r (14.47)

where r is the coordinate vector in the rotating system. Eq. (14.47) gives a
simplified result of

aspace =
(

d

dt
+ Ω×

)(
dr
dt

+ Ω × r
)

=
d2r
dt2

+
d

dt
(Ω × r) + Ω × dr

dt
+ Ω × (Ω × r)

=
d2r
dt2

+ Ω × dr
dt

+
dΩ
dt

× r + Ω × dr
dt

+ Ω × (Ω × r) .

(14.48)

When grouping for Velocity and Angular Velocity,

v ≡ dr
dt

, (14.49)

α ≡ dΩ
dt

, (14.50)

we get

aspace =
d2r
dt2

+ 2Ω × v + Ω × (Ω × r) + α × r. (14.51)

As a result, we get four terms

abody =
d2r
dt2

, (14.52)

acoriolis = 2Ω × v, (14.53)
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acentrifugal = Ω × (Ω × r) , (14.54)

aangular = α × r (14.55)

for all accelerative states for the electron particle. The final acceleration of a
body in space is summarized as follows:

aspace = abody + acoriolis + acentrifugal + aangular (14.56)

where

1. conventional analysis normally ignores the dΩ/dt when the assumption
of an uniformly rotating frame of reference is given,

2. Coriolis acceleration is assumed to vanish in the background through
random collisions within either gas, liquids, or solids, and

3. does not link any of these ignored variables to resonance.

Furthermore, the Lozenz Force Law equation in the coordinates r′ of the rest
system is

FL
′ = q(E′ + v′ × B′). (14.57)

We have to transform this equation to the rotating system according to
Eq. (14.46):

FL = q (E + v × B + (Ω × r) × B) . (14.58)

To re-study the Homopolar Generator in the context of ECE, we use the
Newtonian limit and obtain the equation of motion

maspace = FL (14.59)

which can be rewritten with aid of Eq. (14.56) to

mabody = FL − m (acoriolis + acentrifugal + aangular) . (14.60)

With substitution of Eqs. (14.52–14.55) and (14.58) follows

d2r
dt2

=
q

m
(E + v × B + (Ω × r) × B) − 2Ω × v − Ω × (Ω × r) − α × r.

(14.61)
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We assume that Ω and B point into the direction of the z coordinate,

Ω =

⎛⎝ 0
0
Ω

⎞⎠ , (14.62)

B =

⎛⎝ 0
0
B

⎞⎠ , (14.63)

and E is oscillating in radial direction,

E = E0 cos(ωJ t) r̂ = E0 cos(ωJ t)
r
r
. (14.64)

Then we obtain for the single terms in Eq. (14.61)

v × B =

⎛⎝ v2B
−v1B

0

⎞⎠ , Ω × v =

⎛⎝ −v2Ω
v1Ω
0

⎞⎠ ,

Ω × r =

⎛⎝ −r2Ω
r1Ω
0

⎞⎠ , Ω × (Ω × r) =

⎛⎝ −r1Ω2

−r2Ω2

0

⎞⎠ ,

(Ω × r) × B =

⎛⎝ r1ΩB
r2ΩB

0

⎞⎠ , α × r =

⎛⎝ −r2
dΩ
dt

r1
dΩ
dt

0

⎞⎠ .

(14.65)

Inserting these terms into Eq. (14.61) shows that the particle moves in the
x-y plane exclusively. The two coupled equations of motion in the rotating
frame are

d2r1

dt2
=

q

m

(
E0 cos(ωJ t)

r1√
r2
1 + r2

2

+ v2B + r1ΩB

)
+ 2v2Ω + r1Ω2 + r2

dΩ
dt

,

(14.66)

d2r2

dt2
=

q

m

(
E0 cos(ωJ t)

r2√
r2
1 + r2

2

− v1B + r2ΩB

)
− 2v1Ω + r2Ω2 − r1

dΩ
dt

.

(14.67)
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This is a model for the dynamics within the Homopolar Generator. As
already stated, we cannot expect that electrons move in a solid in such a
way, but it may be a hint for certain effects incurred by mechanical rotation.
The Eqs. (14.66,14.67) have been solved numerically similar to the previously
discussed results. In order to make the single force contributions visible we
have solved the equations with omitting particular terms at the right-hand
side. First we studied the Coriolis force being present as the only force. The
result is shown in Fig. (14.9) for a constant rotation speed Ω. The orbit of a
“free” electron is a spiral as is known from classical mechanics. Fig. (14.10)
shows the same for an oscillating Ω. In the rotating coordinate system the
particle is pushed back and forth as an effect of the variation of Ω. This is
superimposed to the spiralling behaviour. The Lorentz force term in action
is graphed in Fig. (14.11), for better graphical representation with a factor
of q/m = −1. It consists of a force in radial direction (from E field) and a
circular orbit (from v × B term). The result is an open rosette orbit. Near
to the center there is a sharp edge where direction is changed abruptly. A
detailed analysis showed that the velocity in this point is zero, it is like a
classical turning point. The electric and magnetic term alone (not shown)
give a linear oscillating orbit and a circular orbit.

All these effect computed together lead to a quite chaotic behaviour (Fig.
(14.12)). The radius of the orbit is bound due to the Lorentz force term. The
maximum radius taken over a certain time interval can be considered as an
indicator for a certain resonance behaviour. In our interpretation this means
that the charged particle crosses a certain range faster, leading to a higher
current. In Fig. (14.13) this criterion is shown in dependence of a variable
“driving force” term ωJ . There are indeed certain resonances which depend
in a complicated way on the term q/m · B.
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14.5 Discussion of Design

As we have shown in the last section, a varying rotation speed adds sophisti-
cated trajectories to the electron particles within the Homopolar Generator. It
is proposed that the relationships (harmonics/standing waves) between Cori-
olis, centrifugal, and angular accelerations are of key importance; in which,
either the geometrical energy being carried by the electrons or the exposed
spaces around nucleuses creates additional unrecognized forces.

A detailed prototype of this nature is needed for further study. It’s impor-
tant to notice that additional experiments are needed besides SCR in copper
plates; for instance, using aluminum, mercury, carbon nanotubes, supercon-
ducting wires, doped semiconducting materials, Stainless Steel, and additional
alloys are also good candidates. Moreover, a close study of Weber’s Force [18]
application to the study of the Homopolar Generator is also needed. A great
piece of work concerning classical forces and torque was already done by
Guala-Valverde and coworkers (see [25] and references therein).

14.5.1 Magnetic Flux Path Configuration

It is important to mention that a similar path of the accelerated electron just
mentioned can be taken by magnetic flux lines by configuring a transformer
core away from the usual one pass architecture to many flux path architecture
(Fig. (14.14)). A transformer with a coil core design will give flux paths a 1:n
relationship amplifying the flux lines through simple geometry. Technically
the new architecture would make this the first B(3) Transformer in existence.
Engineers using magnets and combination with transformer cores would find
this design useful.

Fig. 14.14. Magnetic flux line amplification by multiple paths.

14.5.2 Proposed Prototype

14.5.2.1 Dynamo Electric Machine

As a result, it is proposed in this document that when SCR & ECE is estab-
lished, the imposed drift velocities no longer generalize a particles’ trajectory
and the proposed harmonic/standing waves thru SCR create powerful reso-
nances causing new anomalous results.
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The proposed AIAS Homopolar Generator will take on a similar design to
Nikola Tesla’s work [20], see Fig. (14.15). In his design he proposed a means to
extract the energy produced from the spinning disks from the least point on
interruptions, the central axis, to both disks. This made his design simple and
effective to keep his contacts from experiencing too much wear. Moreover, his
design included two disks where a common spin direction produced current
from the center-to-periphery of one disk and from the periphery-to-center
of the other disk. His arrangements of the magnets made this simple design
effective as he tied both disks’ periphery with a copper belt band.

Fig. 14.15. Homopolar generator design of Nikola Tesla.

14.5.2.2 P&ID Detail Control

In our design (Fig. (14.16)) we decouple the outside belts for independent
spin control for each Homopolar generator; however, they will have a common
coupling point for the amps to flow through between the central axes of both
disks. The power will be measured and extracted at the periphery of both disk
with contacts going to terminal blocks (V1 and V2) for load connection. The
independent spin control of both disks will superimpose two output waves
that would give further study to ECE and SCR connection.

The basic AIAS Homopolar Process and Instrumentation Diagram (Fig.
(14.16)) shows the general arrangement with Programmable Logic Controllers
(PLC) with a Supervisory Control and Data Acquisition (SCADA) package.
Standard network protocols (Ethernet and Devicenet) are used for control of
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Fig. 14.16. AIAS Homopolar Process & Instrumentation Diagram.

Homopolar generators through variable frequency drives (VFDs) and logging
data from instruments and trending of experimental data (SQL Server) are
stored in a centralized server. Each instrument shown is for proper data anal-
ysis and control of said experiment with Proportional, Integral and Derivative
(PID) software.

The final controls design will give both the engineers and scientist the
flexibility to either expand or refine the necessary dΩ/dt control for proper
ECE and SCR connections.

14.5.2.3 Circuit Analysis of Current

A circuit analysis of the Homopolar Generator reveals a current source-
current output network architecture.

On expansion of this layout it is possible to introduced both positive and
negative feedback through an Inductor by adding or subtracting magnetic
fields to the static field of the magnets. The inductor would take the arbitrary
current produced by the varying current. Since the inductor will be coiled
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around the homopolar generator, the end result will be additional input of
energy into the system.

As mentioned before, an aligned winding of the inductor to the magnetic
fields of the magnet would constitute a positive feedback arrangement. Like-
wise, if the aligned winding of the inductor is in the opposite direction to the
magnetic fields of the magnet then it would constitute a negative feedback.
As a result,

V (t) =
1
2
Ω(t)r2Bt (14.68)

where

Bt = Bmagnet + Binductor (14.69)

for positive feedback. Moreover, equation (14.68) becomes

V (t) =
1
2
Ω(t)r2(Bmagnet + Binductor), (14.70)

where

Binductor = µN
I(t)

l
(14.71)

and

V (t) = I(t)R. (14.72)

Hence, substituting (14.70) and (14.71) into (14.72),

I(t)R =
1
2

(
(Ω(t) r2 (Bmagnet + µN

I(t)
l

)
)

(14.73)

or

I(t)
(

R − Ω(t) r2 µN
I(t)
2l

)
=

1
2
Ω(t) r2 Bmagnet, (14.74)

we finally get

I(t) =
Ω(t) r2 Bmagnet

2
(
R − Ω(t) r2 µN

2l

) (14.75)
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where the known voltages of the system are:

Vhomopolar(t) = I(t)R, (14.76)

Vinductor(t) = L
dI(t)
dt

(14.77)

so that the total voltage is

Vtotal(t) = I(t)R + L
dI(t)
dt

(14.78)

and total power created by the system is

Power(t) = Vtotal(t) I(t). (14.79)

With substitution of (14.78) into (14.79) we get

Power(t) =
(

I(t)R + L
dI(t)
dt

)
I(t) (14.80)

or

Power(t) = I2(t)R + L
dI(t)
dt

I(t). (14.81)

For negative feedback, Eq. (14.70) would have a minus before the mag-
netic field on the inductor indicating that it has been wound in the opposite
direction of the magnet’s field. Again, this feedback introduces additional
standard electrical results which would make the system react much different
from the standard Homopolar Generators. We also point out that Tesla did
use such inductors on his design to add additional energy into the system.

We conclude with the statement that Eq. (14.75) represent a further type
of resonance. The current goes to inifity if the design is chosen in a way that
the denominator of this equation tends to zero:

R − Ω(t) r2 µN

2l
= 0. (14.82)

Assuming the harmonic time behaviour of Eq. (14.40) this gives a resonant
current as shown in Fig. (14.17) (in arbitrary units). A time dependent Ω is
even not required in this case. Variation of Ω being constant in time leads to
the pole-like resonance graphed in Fig. (14.18).

In total we have shown in this paper that in the homopolar generator there
are three types of resonances possible: A resonance of potential, a resonance
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Fig. 14.17. Current resonance according to positive feedback design,
periodic Ω(t).
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Fig. 14.18. Resonance curve for current resonance, no time-dependent Ω.

due to movement of charge carriers, and a resonance of the current by positive
feedback.
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