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Abstract

The experimentally observable gravitational red shift is derived by rotating
the line element derived from the Theorem of Orbits. The latter is a simple
special case of the Frobenius Theorem for a spherically symmetric space-time.
All known orbits are described by the geometry of the Theorem of Orbits,
and the gravitational red shift is shown to be the precession or phase shift
caused by rotating the line element of the Theorem of Orbits.
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21.1 Introduction

Recently in the ECE series of papers [1–10] it has been shown that all known
orbits can be described directly by the spherical symmetry of space-time with
torsion and curvature without having to use any field equation a priori. The
Theorem of Orbits (paper 111) has been derived from the well known [11]
Frobenius Theorem applied to a spherically symmetric space-time. From the
Theorem of Orbits the line element is derived, giving the orbital equation.
Therefore the field of force (which becomes the Newtonian field of force in
the appropriate limit) is derived directly from spherical space-time symmetry.
This procedure is summarized in Section 21.2, and in Section 21.3 the well
known gravitational red shift is given a new meaning by deriving it from rota-
tion of the line element of Section 21.2. It is found that the gravitational red
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shift is a precession or phase shift - essentially a property purely of spherical
space-time and not of any field equation. In the standard model the gravita-
tional red shift is thought to be a wavelength change and incorrectly derived
from a space-time that has no torsion.

21.2 Line Element and Orbital Equation from Theorem
of Orbits

The Theorem of Orbits is a simple example of the Frobenius Theorem [11]
which defines the most general line element. The Theorem of Orbits is:

nr =
r

m
=
∫

dr = r + µ (21.1)

where n and m are functions of r, the radial coordinate in spherical polar
coordinates. The constant of integration is in general non-zero, and goes to
zero in a Minkowski space-time. If the Frobenius Theorem is applied [11] to
a spherically symmetric space-time the line element is:

ds2 = −n(r)c2dt2 + m(r)dr2 + r2dΩ2. (21.2)

From the Theorem of Orbits it is found that:

n = 1 +
µ

r
, (21.3)

m =
(
1 +

µ

r

)−1

, (21.4)

so that the line element becomes:

ds2 = −
(
1 +

µ

r

)
c2dt2 +

(
1 +

µ

r

)−1

dr2 + r2dΩ2 (21.5)

in spherical polar co-ordinates.
The orbital equation is obtained by considering the special case of orbits

in a plane, so the line element (21.5) reduces to:

ds2 = −
(
1 +

µ

r

)
c2dt2 +

(
1 +

µ

r

)−1

dr2 + r2dφ2. (21.6)
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Define [1–11] the constant of motion:

−ε = −
(

ds

dλ

)2

= −c2

(
dτ

dλ

)2

= −
(
1 +

µ

r

)
c2

(
dt

dλ

)2

+
(
1 +

µ

r

)−1
(

dr

dλ

)2

+ r2

(
dφ

dλ

)2

(21.7)

where dτ is the infinitesimal element of proper time. Now make the choice:

λ = τ (21.8)

to find:

−c2 = −
(
1 +

µ

r

)
c2

(
dt

dτ

)2

+
(
1 +

µ

r

)−1
(

dr

dτ

)2

+ r2

(
dφ

dτ

)2

. (21.9)

To convert to S.I. units multiply throughout by 1
2m, where m is to be deter-

mined:

1
2
mr2

(
dφ

dτ

)2

− 1
2
m
(
1 +

µ

r

)
c2

(
dt

dτ

)2

+
1
2
m
(
1 +

µ

r

)−1
(

dr

dτ

)2

= −1
2
mc2. (21.10)

Multiply through by
(
1 + µ

r

)
: to find that:

1
2
mr2

(
dφ

dτ

)2 (
1 +

µ

r

)
− 1

2
m
(
1 +

µ

r

)2

c2

(
dt

dτ

)2

+
1
2
m

(
dr

dτ

)2

= −1
2
mc2
(
1 +

µ

r

)
. (21.11)

This is the orbital equation:

1
2
m

(
dr

dτ

)2

+ V = E. (21.12)

The total energy in S.I. units is:

E =
1
2
mc2
(
1 +

µ

r

)2
(

dt

dτ

)2

. (21.13)
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The potential energy in S.I. units is:

V =
1
2
m
(
1 +

µ

r

)(
c2 +

L2

r2

)
(21.14)

where:

L = r2 dφ

dτ
(21.15)

is a constant of motion having the units of angular momentum per unit mass.
The factor 1

2 is introduced [11] to write the equation in standard dynamical
form. The potential energy is therefore:

V =
1
2
mc2 +

1
2
mc2 µ

r
+

1
2
m

L2

r2
+

1
2

mL2µ

r3
(21.16)

and is made up of four terms which are identified below. For all orbits exclud-
ing binary pulsars and the Cassini/Pioneer anomaly it is found by experi-
mental observation that:

µ = −2mG

c2
. (21.17)

Therefore the potential energy becomes:

V =
1
2
mc2 − m

mG

r
+

1
2

mL2

r2
− L2mMG

c2r3
. (21.18)

Therefore it becomes possible to identify the four terms as follows.

1) A constant term proportional to rest energy, 1
2mc2.

2) The Newtonian potential of attraction, −mMG/r.

3) The centripetal repulsion, mL2/(2r2).

4) The relativistic correction to the Newtonian attraction, −L2mMG/(c2r3).

Therefore the factor m is the mass of an object attracted by an object of
mass M. The Theorem of Orbits (21.1) is the “geometrical control” over the
way m and M interact. The introduction of m, M and G introduces physics
into pure geometry.

The Newtonian limit is defined by:

r → ∞ (21.19)
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when the familiar Newtonian terms (21.2) and (21.3) dominate. The Newton-
ain force of attraction is:

F = −∂V

∂r
= −mMG

r2
(21.20)

which is the inverse square law of Newton. From Eqs (21.18) and (21.20) the
total force between m and M is:

F = −mMG

r2
+

mL2

r3
− 3L2mMG

c2r4
. (21.21)

This force law describes the vast majority of known orbits with great accuracy.
It describes perihelion advance, deflection of light by gravity, frame dragging,
Shapiro time delay and all the phenomena incorrectly attributed in the stan-
dard model to the now obsolete [1–10] Einstein field equation. As argued,
these phenomena are due purely to the spherical symmetry of space-time.
The masses m and M are introduced following experimental observation. The
Newtonian force is Eq. (21.20). Newton did not realize the existence of the
centripetal force, and of course did not realize the existence of the relativistic
correction.

In binary pulsars (paper 108) the orbits decrease by a few millimeters per
revolution. This effect is described by the addition of a very small perturbation
as follows:

µ = −
(

2mG

c2
+

a

r

)
(21.22)

which generates an additional attraction potential:

∆V = −1
2
ma

(
c2

r2
+

L2

c2r4

)
(21.23)

and an additional force of attraction:

∆F = −ma

(
c2

r3
+

2L2

c2r5

)
(21.24)

which causes the two objects of a binary pulsar to spiral in towards each
other from a relativistic orbit whose perihelion advance is a few degrees per
revolution. This is a very small effect, but reproducible and repeatable. The
same type of phenomenon is found in the solar system in the well known
Pioneer/Cassini anomalies. Both spacecraft see a tiny additional force of
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attraction not present in Eq. (21.21). The complete force law for binary pul-
sars and the Pioneer Cassini orbits is therefore:

F = −mMG

r2
+

m

r3
(L2 − ac2) − 3LmMG

c2r4
− 2amL2

c2r5
, (21.25)

the Newtonian force in this case being only one of five terms.

21.3 The Gravitational Red Shift

Consider the line element (21.5) in cylindrical polar co-ordinates:

−ds2 =
(
1 +

µ

r

)
c2dt2 −

(
1 +

µ

r

)−1

dr2 − r2dφ2 − dZ2. (21.26)

Now rotate it (see paper 110) at an angular velocity ω as follows:

φ′ = φ + ωt. (21.27)

The rotated line element is therefore:

−ds′2 =
(
1 +

µ

r

)
c2dt2 −

(
1 +

µ

r

)−1

dr2 − r2dφ′2 − dZ2 (21.28)

where:

dφ′ = dφ + ωdt (21.29)

and

dφ′2 = dφ2 + 2ωdφdt + ω2dt2. (21.30)

It is found that:

−ds′2 =
(

1 +
µ

r
− v2

c2

)
(c2dt2 − 2r2Ωdφdt)

−
(
1 +

µ

r

)−1

dr2 − r2dφ2 − dZ2

(21.31)

where the orbital linear velocity of rotation is defined by

v = rω. (21.32)
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Identify the relativistic angular velocity (compare paper 110 on www.aias.us)
as:

Ω = ω

(
1 +

µ

r
− v2

c2

)−1

(21.33)

and the infinitesimal of proper time by:

dτ =
(

1 +
µ

r
− v2

c2

) 1
2

dt. (21.34)

The change of phase, or precession, upon rotating by 2π radians is:

α = Ωdτ − ωdt = 2π

((
1 +

µ

r
− v2

c2

)− 1
2

− 1

)
. (21.35)

The limit

r → ∞ (21.36)

defines the Thomas precession (paper 110):

α(Thomas) = 2π

((
1 − v2

c2

)− 1
2

− 1

)
(21.37)

and the limit:

v → 0 (21.38)

defines the gravitational red shift:

α(grav) = 2π
((

1 +
µ

r

)− 1
2 − 1

)
. (21.39)

For almost all orbits, as argued in Section 21.2, it is found by experimental
observation that:

µ = −2mG

c2
(21.40)
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so the gravitational red shift is:

α(grav) = 2π

((
1 − 2mG

c2r

)− 1
2

− 1

)
∼ 2πmG

c2r
. (21.41)

as observed experimentally as is well known. The Thomas precession is
well observed experimentally in atomic and molecular spectra in spin
orbit coupling.

It is concluded that both the gravitational red shift and the Thomas pre-
cession are due purely to the spherical symmetry of space-time. The standard
model’s Einstein field equation is known to be geometrically incorrect because
of its neglect of torsion, so the standard explanation of the gravitational red
shift cannot be correct. Similarly, the standard model’s cosmological red shift
(which is different from the gravitational red shift) is an artifact based on the
Roberston Walker metric, which in paper 93 on www.aias.us was shown to
violate basic geometry (the Hodge dual of the Bianchi identity).
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