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Abstract

The inverse Faraday effect for one electron in a circularly polarized elec-
tromagnetic field is deduced directly from the Einstein equation of special
relativity, a limit of the ECE wave equation. It is shown that the effect is
due to the fundamental ECE spin field. An additional static magnetic field
produces the Faraday effect using the same method. Therefore the inverse
Faraday effect and Faraday effect are both described using the Einstein equa-
tion. The non-relativistic and hyper-relativistic limit of the inverse Faraday
effect are described, and self-consistent results obtained.

Keywords: ECE spin field, ECE wave equation, inverse Faraday effect,
Faraday effect, Einstein equation.

11.1 Introduction

Recently a self-consistent and fully quantized unified field theory has been
developed [1–14] from standard Cartan geometry [15]. This is a generally
covariant unified field theory based on the Einstein/de Broglie philosophy,
i.e. a causal and objective physics. General relativity and wave mechanics
have been unified with geometry and this is known as Einstein Cartan Evans
(ECE) unified field theory. It has many advantages over the standard model
(see www.aias.us) and has been experimentally tested in several ways. In this
paper the ECE theory is used to show that the inverse Faraday effect (IFE)
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122 11 Description of the Faraday Effect and Inverse Faraday Effect

and Faraday effect (FE) for one electron originate in the ECE spin field, a
fundamental property of general relativity applied to electromagnetism. The
inverse Faraday effect is the magnetization of matter by a circularly polarized
electromagnetic field, and the Faraday effect is the rotation of the plane of
polarization of electromagnetic radiation by a static magnetic field.

In Section 11.2 the Einstein equation is deduced as a limit of the ECE
wave equation [1–14]. It is applied to one electron and a circularly polarized
electromagnetic field introduced with the minimal prescription. The equation
is solved directly to give the relativistic angular momentum and kinetic energy
of the electron. This method gives the angular frequency of the electron (Ω)
and allows the angular frequency of the applied electromagnetic field (ω) to
be expressed in terms of Ω. The FE is described in Section 11.3 through the
additional influence of a static magnetic field on the angular velocity of the
electron. The static magnetic field is shown to change the electromagnetic
phase by:

Δφ =
2eB

m

(
t − Z

c

)
(11.1)

and this the one electron Faraday effect. The latter is a relativistic
phenomenon in general. Here B is the applied magnetic flux density in tesla
and e and m are the electronic charge magnitude and mass respectively.
Finally it is shown in Section 11.4 that the non-relativistic limit and ultra-
relativistic limit of the IFE obtained by this method are both the same as
obtained from the relativistic Hamilton Jacobi equation in previous work.

11.2 The Inverse Faraday Effect

The starting point of the calculation is the ECE wave equation [1–14]:

(� + kT )qa
μ = 0 (11.2)

where qa
μ is the tetrad wave-function of the electron, k is Einstein’s con-

stant, and T is the scalar canonical energy - momentum density of the elec-
tron. When the fermion field becomes independent of other fields Eq. (11.2)
reduces to:

kT = k
m

V
=

m2c2

�2
(11.3)



�

�

“Evans˙Chapter11” — 2008/11/13 — 19:40 — page 123 — #3
�

�

�

�

�

�

11.2 The Inverse Faraday Effect 123

where � is the reduced Planck constant and where c is the speed of light
in vacuo. Here V is a finite volume which the electron always occupies and
which his defined by:

V =
k�

2

mc2
. (11.4)

Therefore there are no singularities in ECE theory and the need for elaborate
renormalization is by-passed. In this limit the ECE wave equation of the
electron becomes the Dirac equation of the free electron:

(
� +

m2c2

�2

)
qa
μ = 0. (11.5)

The index a of the tetrad denotes the well known spin of the fermion and
the index μ is that of the Pauli spinor. So the tetrad becomes the well known
Dirac spinor.

The classical equivalent of the Dirac equation is well known to be the
Einstein equation:

pμpμ = m2c2 (11.6)

where the rest energy of the electron is:

E0 = mc2. (11.7)

Here:

pμ =
(

E

c
,p

)
, pμ =

(
E

c
,−p

)
, (11.8)

in contravariant-covariant notation, where E is the relativistic energy:

E = γmc2 (11.9)

and p is the relativistic momentum:

p = γmv. (11.10)

Eq. (11.10) is equivalent to the well known Einstein equation:

E2 = c2p2 + E2
0 . (11.11)
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124 11 Description of the Faraday Effect and Inverse Faraday Effect

The relativistic kinetic energy is defined to be:

T = E − E0 =
c2p2

E + E0
(11.12)

Here:

γ =
(

1 − u2

c2

)− 1
2

(11.13)

where u is the velocity of one frame with respect to another in a Lorentz
boost, and v is the electron velocity. The influence of the electromagnetic
field is introduced through the minimal prescription:

pμ → pμ − eAμ (11.14)

where the four-potential is:

Aμ =
(

φ

c
,A

)
. (11.15)

Here φ is the scalar potential and A is the vector potential. For a circularly
polarized electromagnetic field:

A = A(0)(i cos φ + j sinφ) (11.16)

where the electromagnetic phase is defined as:

φ = ωt − κZ. (11.17)

Here ω is the angular frequency at instant t and κ is the vector potential at
coordinate Z. The phase can be rewritten in terms of ω as:

φ = ω

(
t − Z

c

)
. (11.18)

The method developed here to describe the IFE is to integrate p directly to
give the position vector r and to calculate the relativistic angular momentum
directly:

J = r × p (11.19)
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11.2 The Inverse Faraday Effect 125

it is shown that the relativistic angular momentum is proportional to the
ECE spin field. The angular frequency Ω of the electron in the electromag-
netic field is then calculated from a comparison of the relativistic angular
momentum J and kinetic energy T . Finally the field angular frequency and
phase are expressed in terms of Ω. The additional effect of a static magnetic
field (Section 11.3) is to change Ω, and therefore the phase. This is the one
electron Faraday effect, which is due to a combination of the ECE spin field
and a static magnetic field.

The relativistic momentum is:

p = γm
dr

dτ
= γm

dr

dt

dt

dτ
(11.20)

where:

dt

dτ
= γ =

(
1 − u2

c2

)− 1
2

. (11.21)

Here τ is the proper time. Therefore the position vector is given by:

r =
1
γ

∫
vdt. (11.22)

The electronic momentum in the presence of the electromagnetic field is:

p = γmv + eA. (11.23)

Therefore the relativistic angular momentum is:

J = r × p =
(∫

vdt +
1

γm

∫
eAdt

)
× (γmv + eA) (11.24)

If we define:

r0 =
∫

vdt (11.25)

then:

J =γr0 × p + er0 × A

+ e

∫
Adt × v +

e2

mγ

∫
Adt × A.

(11.26)
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126 11 Description of the Faraday Effect and Inverse Faraday Effect

The second order interaction term in Eq. (11.26) is:

J =
e2A(0)2

mγω
k (11.27)

which is expressed in terms of the ECE spin field B(3) as:

J (3) =
e2c2B(0)

mγω3
B(3). (11.28)

In the non-relativistic limit:

γ → 1 (11.29)

and the induced magnetic dipole moment is given through the gyromagnetic
ratio by:

m(3) =
e3c2B(0)

2m2ω3
B(3). (11.30)

The non-relativistic kinetic energy of interaction is:

T =
1
2
ΩJ. (11.31)

Eqs. (10.28) and (10.31) are the same as results obtained previously [1–14]
from the relativistic Hamilton Jacobi equation. Therefore a check for self
consistency has been obtained.

The magnitude of the momentum in Eq. (11.23) is:

p = γmv + eA. (11.32)

The relativistic position vector of the electron in the electromagnetic field is:

r = r0 +
e

mγ

∫
Adt (11.33)

and its magnitude for the plane wave (11.16) is:

r = r0 +
eA(0)

γmω
. (11.34)
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The magnitude of the relativistic angular momentum is then:

J = rp =
(

r0 +
eA(0)

γmω

) (
γmv + eA(0)

)
. (11.35)

The angular momentum magnitude is:

J =
T

Ω
. (11.36)

From previous work [1–14] the kinetic energy of the electron in the electro-
magnetic field is:

T =
(γmv + eA(0))2c2

mc2(1 + γ) + eφ
. (11.37)

Thus:

Ω =
T

J
(11.38)

and the angular velocity of the electron in the electromagnetic field is:

Ω =
(γmv + eA(0))c2(

r0 + eA(0)

γmω

)
(mc2(1 + γ) + eφ)

. (11.39)

In the non-relativistic limit for a weak applied electromagnetic field:

eA � γmv, eA � γmω, (11.40)

eφ � mc2(1 + γ), (11.41)

γ → 1, (11.42)

and the classical non-relativistic result is recovered for the kinetic energy of
the free electron:

T =
1
2
ΩJ. (11.43)
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11.3 The Faraday Effect

From Eq. (11.39) it is seen that the angular velocity of the electromagnetic
field may be expressed in terms of that of the electron:

ω =
eAΩ

γm(x − Ωr0)
, x =

(γmv + eA)c2

mc2(1 + γ) + eφ
. (11.44)

The electromagnetic phase from Eq. (11.18) is therefore:

φ =
(
t − z

c

) (
eAΩ

γm(x − Ωr0)

)
. (11.45)

A static magnetic field is now added to this system in order to describe the
one electron Faraday effect. The effect of the static magnetic field on the
angular velocity of the electron is well known from electron spin resonance
theory to be:

Ω =
eB

m
. (11.46)

For an initially stationary electron:

v = 0 (11.47)

considered to be initially at

r = 0 (11.48)

the expression (11.45) simplifies. We further consider the non-relativistic
limit:

mc2(1 + γ) � eφ, γ → 1 (11.49)

to obtain the simple result:

ω → 2Ω. (11.50)

Therefore the electromagnetic phase is changed in this approximation to:

φ = 2
(

t − Z

c

) (
Ω +

eB

m

)
(11.51)
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i.e. there is a phase change:

Δφ =
2eB

m

(
t − Z

c

)
(11.52)

which is the Faraday effect. The effect of this change of phase on a plane wave
such as (11.16) is to change it to:

A′ = A(0)(i cos φ′ + j sinφ′) (11.53)

where:

cos φ′ = a cos φ, sinφ′ = b sin φ. (11.54)

For example if:

φ = 45◦, φ′ = 60◦ (11.55)

then:

a = 1.414, b = 0.816. (11.56)

So the circular polarization of Eq. (11.16) is changed to the elliptical polariza-
tion of Eq. (11.53) and this is equivalent to rotating the plane of polarization.
It is seen that both IFE and FE are due fundamentally to the ECE spin field
via Eq. (11.30).

11.4 Hyper-Relativistic Limit

In this limit synchrotron radiation is emitted by the circling electron, as is
well known. In the hyper-relativistic limit:

v → c. (11.57)

In consequence:

u → 0 (11.58)

because the speed of the electron cannot be increased from the limit c. So a
Lorentz boost of the electron traveling at c will result again in the electron
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traveling at c. Eq. (11.58) follows from this law of relativity introduced by
Einstein in 1905. Therefore the kinetic energy from Eq. (11.39) approaches:

T →
(

mc2

eφ

)
ωJ. (11.59)

In this limit the rest energy mc2 of the electron becomes photon energy of a
given frequency ω:

�ω = mc2 = eφ (11.60)

where the quantum of energy of the electromagnetic field is defined by:

T = �ω. (11.61)

The angular momentum J of the electron becomes the quantum of angular
momentum of the electromagnetic field:

J = � (11.62)

so we obtain:

T = �ω. (11.63)

In this case the electromagnetic field (one photon) is of such intensity as
to transfer all its energy (�ω), angular momentum (�) and angular velocity
(ω) to the electron in an inelastic collision. In the opposite non-relativistic
limit (11.43) the kinetic energy of the electron is essentially unaffected by the
weak electromagnetic field in an elastic interaction of field and electron. These
results were again obtained from the relativistic Hamilton Jacobi equation of
previous work [1–14]. So both methods give self-consistent information on the
IFE and FE. It has been shown that both effects are due to the ECE spin
field.
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