
Graphical Results for Hydrogen and Helium 521
Journal of Foundations of Physics and Chemistry, 2011, vol. 1 (5) 521–534

ECE theory of the Lamb shift in atomic 
hydrogen and helium

M.W. Evans1* and H. Eckardt2**

*Alpha Institute for Advanced Studies (AIAS) (www.aias.us); **Unified Physics Institute of Technology 
(UPITEC) (www.upitec.org)

The ECE theory of the Lamb shift in atomic hydrogen and helium is devel oped 
using considerations of the centrifugal repulsion in atomic hydrogen and the 
Coulomb and exchange integrals in atomic helium. Radiative correc tions are 
applied using the same method as for the anomalous g factor of the electron 
and as developed in previous work for atomic hydrogen without the centrifugal 
correction. The results are expressed systematically in terms of a parameter r(vac) 
that measures the effect of radiative correction on the radial and other orbitals. 
This method can be extended systematically in quantum chemistry packages, 
which can be used for example to numerically generate radial orbitals for use 
with this method. The latter may have important con sequences in obtaining new 
sources of energy from space-time, (i.e. the source of radiative corrections).

Keywords: Einstein–Cartan–Evans (ECE) theory, Lamb shift in atomic hydrogen and helium, energy from 
space-time.

1 Introduction

Recently [1] the Einstein–Cartan–Evans unified field theory [2-12] has been applied 
to the determination of the Lamb shift in atomic hydrogen using a method that 
succeeded in reproducing the g factor of the electron to experi mental uncertainty. 
The results of the calculation were expressed in terms of a radial parameter 
r(vac) which demonstrates the way in which the radiative correction affects each 
orbital. The Lamb shift in atomic H [13] was produced satisfactorily using this 
method, which has no free parameters. In this paper the method is extended 
to atomic hydrogen with consideration of centrifugal repulsion [14] as well as 
Coulombic attraction, and to atomic helium, which consists of two electrons and 
two protons. The results are again in satisfac tory agreement with data, and can 
1e-mail: EMyrone@aol.com
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be extended systematically using quantum chemistry packages such as density 
functional code. The overall aim is to find methods of amplifying the radiative 
correction by resonance, so that free electrons are released and used for power 
generation in circuits.

In Section 2 the method is used for the complete potential of atomic hydrogen, 
which is well known [14] to contain a centrifugal repulsion term as well as the 
Coulomb attraction between electron and proton. The result is expressed in terms 
of r(vac) and graphical data produced for the relevant orbitals. The original Lamb 
shift [15] was discovered between the 2s and 2p orbitals of hydrogen, and this 
method naturally removes the angular depen dence, so that only radial orbitals 
need be considered [14].

In Section 3 the method is extended to atomic helium, and considera tions 
given to the Coulomb and exchange integrals [14] in order to understand the 
basic features of multi electron atoms. If a method is found to resonate r(vac) 
to infinity, the atom will dissociate into free electrons which can be used for 
powering circuits. The source of this power is space-time, which is also the 
source of the radiative correction in ECE theory. Therefore the meth ods of this 
paper complement previous considerations [2-12] of ionization of atoms using 
spin connection resonance [16].

2 Atomic hydrogen with centrifugal effects

In this paper the non-relativistic quantum limit of the ECE wave equation [2-
12] is used, the Schrodinger equation considered in a causal and objective 
interpretation of quantum mechanics rather than the Copenhagen interpre tation. 
The Schrodinger equation of atomic hydrogen [14] is:

2 2
2

02 4
e E

m r
− ∇ ψ − ψ = ψ

π∈


 
 (1)

where m is the reduced mass, ħ is the reduced Planck constant, є0 is the S.I. 
vacuum permittivity, e is the charge on the proton, — e is the charge on the 
electron, r is the radial distance between electron and proton, E is the total 
energy and Ψ is the wave-function. By expressing the laplacian in spherical polar 
coordinates, the equation of the spherical harmonics is introduced:

( )1Y YΛ = − +   (2)

where Y(θ, Φ) are the spherical harmonics [14] and l is the angular momentum 
quantum number. The solution of Eq. (1) is:
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( ) ( ) ( ), , ,r R r Yψ θ φ = θ φ   (3)

where R(r) are the radial wave-functions. Table 1 gives the first five orbitals of 
hydrogen with normalization factored out for clarity. It is seen that the complete 
orbital is expressed in terms of the principal quantum number n, the angular 
momentum quantum number l and its components. However, from Eqs. (1) to 
(3) the Schrodinger equation can be written [14] as:

( )
2 2

0
eff22

d P V P EP
m dr

− − =


 
 (4)

where the effective potential is:

( ) ( ) 22
0

eff 2
0

1
4 2

eV
r mr

+
= − +

π
  

  
(5)

and where:

P = rR.  (6)

The second term in Eq. (5) is the centrifugal repulsion and the complete 
potential has a minimum when l is not zero (diagram (b)).

The radiative correction that leads to the Lamb shift [1] is now incorpo rated 
by changing Eq. (4) to:

( )
22 2

0
eff21

2 4
d P V P EP

m dr
α − + − = π 



 
 (7)

(a) (b)
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where α is the fine structure constant. This equation is equivalent by hypoth esis 
[1] to:

2 2

eff22
d P V P EP

m dr
− − =


 
(8)

where:

( )( )
( )

( )( )
22

eff 2
0

1
.

4 vac 2 vac
eV

r r m r r

+
= −

π + +

  


 

 (9)

Here r(vac) is the extent to which the radiative correction perturbs the elec-
tron in each orbital. To first order in α:

( )( )eff

2 2
0

eff24
d P V V P

m dr
α

− = −
π


 
(10)

where

P = P0 (hydrogen)  (11)

to a very good approximation, because the Lamb shift in hydrogen is very small 
compared with the total energy of the unperturbed orbitals. Therefore:

Table 1 First Five Orbitals of Atomic H

n


me
( )( ) , ,n m rψ θ φ





1s 1 0 0 exp r
a

 − 
 

2s 2 0 0 2 exp
2

r r
a a

   − −   
   

2pZ 2 1 0 cos exp
2

r r
a a

 θ − 
 

2pX 2 1 1 ( )sin exp exp
2

r ri
a a

 − θ φ − 
 

2pY 2 1 -1 ( )sin exp exp
2

r ri
a a

 θ − φ − 
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(12)

and Eq. (10) is solved for r(vac) for each orbital, the result being differ ent for 
each orbital. Specifically there is a difference between the 2s and 2p orbitals, 
giving the Lamb shift. The experimental value of the latter is used to find 
r(vac). Computer algebra is used to solve Eq. (10) and the results are graphed 
in Section 4.

3 Atomic Helium

This atom consists of two electrons and two protons and its Schrodinger equation 
is:

HΨ = EΨ,  (13)

( )
2 2 2 2

2 2
1 2

0 1 0 2 0 12

2 2
2 4 4 4

e e eH
m r r r

= − ∇ +∇ − − +
π π π



    
(14)

where r1 is the distance between electron 1 and the nucleus and similarly for r2. 
The Coulombic terms are doubled because there are two protons giving twice 
the attractive force. There is also an electron electron repulsion, where r12 is the 
distance between the two electrons. The inter-electron term can be expanded in 
terms of spherical harmonics:

( ) ( )2
1 1 2 2

0 112 1 1

1 1 4 , ,
2 1 m m

m

r Y Y
r r r

∞

= =

 π = θ φ θ φ  +  
∑∑

 







 



  
(15)

if r1 > r2, and inter-change r1 and r2 when r2 > r1. This gives rise [14] to the 
Coulomb integral:

( ) ( )
2

2 2
1 1 2 2 1 2

0 12

1 .
4
eJ r r d d

r
= ψ ψ τ τ

π ∫  

(16)

For example, if we consider the interaction energy between two electrons in 
a hydrogen like 1s orbital [14], then:
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( )
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(17)
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exp rZr Z
a a
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 (18)

and it is found that:

1 2
12 1

2 1
12 2

1 1 , ,

1 1 , .

r r
r r

r r
r r

= 

=
  

 (19)

These results can be used to calculate J analytically:

2

0 0

5 .
8 4

e ZJ
a

=
π  

(20)

It is found that [14]:

( )1
5 = 2

16 sJ E
  

(21)

so the electron electron repulsion is a substantial fraction of the unperturbed 
total energy of the 1s orbital in helium. The aim of this section is to incorpo rate 
radiative corrections into the helium atom, which also contains the well known 
exchange integral leading to Fermi heap and hole theory [14]. The Schrodinger 
equation of atomic helium is:

( ) ( )1 2 1 2,  = , H r r E r rψ ψ   (22)

where:

( )
1 1 2 2 21 2 1,  = .n m n mr rψ ψ ψ

 

   (23)

It is assumed that there is an unperturbed hamiltonian [14] which is the sum 
of two hydrogen like hamiltonians:
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H(0) = H1 + H2  (24)

where:

2 2
2

0

2 .
2 4i i

i

eH
m r

= − ∇ −
π



  
 (25)

The factor two in the numerator of the second term comes from the fact that 
there are two electrons and two protons, so each electron is attracted by two 
protons. The assumption (24) means that the total wave-function must be the 
product [14]:

( ) ( ) ( )1 2 1 2, .r r r rψ = ψ ψ   (26)

The total unperturbed energy levels are [14]

2 2
1 2

1 14E hcR
n n∞

 
= − + 

   
 (27)

where R∞ is the Rydberg constant.
To incorporate radiative corrections the first step is to develop Eq. (25) and 

write it as:

( )
2 2

0
eff,22i i

i

dH V
m dr

= − −


 
(28)

where

( ) ( ) 22
0

eff, 2
0

1
2i

i i

eV
r mr

+
= − +

π
  

  
 (29) 

So there are two hydrogen like equations:

( )
2 2

0
eff,1 12

12
d P V P E P

m dr
− − =


 
(30)
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m dr
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where:

( ) ( ) 22
0

eff,1 2
0 1 1

1
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r mr

+
= − +

π
  

  
(32)

( ) ( ) 22
0

eff,2 2
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1
.

2
eV

r mr
+

= − +
π

  

  
(33)

Radiative corrections are incorporated into Eqs. (30) to (31) as in Eqs. (8) to 
(11). For each r1 and r2 there will be a corresponding r1(vac) and r2(vac) and 
the total wave-function is the product as in Eq. (26). These radiative corrections 
may then be incorporated sytematically into the Coulomb and exchange integrals 
using the expansion (15) of r12 in terms of r1 and r2. With radiative corrections:

r1 → r1 + r1 (vac),  (34)

r2 → r2 + r2 (vac).  (35) 

By hypothesis, Eqs. (30) and (31) become:

2 2

eff,1 12
12

d P V P E P
m dr

− − =


 
(36)

2 2

eff,2 22
22

d P V P E P
m dr

− − =


 
 (37)

with:

22 2

2 2
1 1

1
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d d
dr dr
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To first order in α:

( ) ( )( )
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0 0
eff,1 eff,12

14
d P V V P

m dr
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− = −
π


 
(42)
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For two 1s electrons:
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1 12

0 0

2

22 3 .2 2
23 0

0 0

2 22 2. .
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2 1
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= π π π 

 
+  

 

∫
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(44)

and this may be evaluated with computer algebra with radiative corrections. Finally 
a search may be made numerically for conditions under which r(vac) becomes 
very large. Under such conditions the atom may ionize, giving free electrons. This 
idea complements previous work [2–12] using spin connection resonance [17]. 
The overall method can be systematically extended by using quantum chemistry 
software to generate radial wave-functions with which radiative corrections can 
be considered.

4 Graphical Results for Hydrogen and Helium

In this section we present some graphical results for the spacetime interaction 
of hydrogen and helium. The corresponding calculations in the preceding paper 
are repeated with inclusion of the centrifugal term in the potential. As stated in 
section 2, this accounts for all angular momentum effects in the limit of averaged 
angular dependencies. The orbital averaging used in the preceding paper is no 
longer required. The method of calculating the equivalent radius function r(vac) 
for the shift of each orbital is the same as before: insert Eq. (12) into Eq. (10). 
With the wave functions of Table 1 computer algebra delivers the analytical 
solution for r(vac). For the 1s and 2s orbitals we obtain the same result as in 
the preceding paper since l = 0. For the 2p state the result is (in atomic units 
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for simplicity):

( ) ( )

( ) ( )(
( ) ( ) )

21,2

2

3 2

1vac
16 8 16 8

2 2 8 2 16 32 32 16

8 8 16 8

r
r r

r r r

r r r

=
+ π − − π +

× ± π π − + − π + π −

− + − π + π −
 

(45)

with

0 0 =  =  = 4  = 1cα π    (46)

The dependence of r(vac) from the radius coordinate r was already shown 
in the preceding paper, Figs. 1c and 2c, for the 1s and 2s orbitals. The two 
solutions for 2p are graphed in Fig. 1 of this paper. The first solution shows a 
pole and is therefore considered to be non-physical. The second looks qualitatively 
similar to that obtained by the earlier averaging method (Fig. 3c of the preceding 
paper?????).

The Lamb shift itself is characterized by the difference of r(vac) values for 2s 
and 2p. This is shown in Fig. 2. for both solutions of 2p. The difference values 
for the second solution remain positive, indicating again the physical relevance 
of this solution.

In the simplest approach to He, hydrogen-like wavefunctions are being used 
(see section 3). In this approach the effective potentials decouple for both 

Fig. 1. Vacuum interaction radius r(vac) for H 2p orbital.
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electrons and r(vac) is the same in both cases. For the 1s state the Hydrogen-
like wavefunction

( )( ) 0

3

3
0

1
Zr
aZs r e

a

−

ψ =
π  

(47)

is used which contains a parameter Z for the core charge. Solving Eqs. (42/43) 
for r(vac) then gives

( )
2

0

2
0 0

vac
4

r Z Za rr mcrZ a Za

−
=

π
+ −

  

(48)

The curves of this function for both H and He are plotted in Fig. 3. It can 
be seen that the He curve is compressed in radial direction due to the higher 
core charge of He

Highly interesting is the effect of r(vac) on the exchange integral (16). Its 
definition then is to be modified to

( ) ( )
( )( ) ( )( )

2 2
2

1 1 2 2
1 2

0 1 1 2 24 vac vac
r reJ d d

r r r r r r
ψ ψ

= τ τ
π + − −∫

 
(49)

For two 1s electrons this gives in analogy to Eq. (44):

Fig. 2. Effective Lamb shift radius r(vac)(2s) - r(vac)(2p).
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∫

∫



 

(50)

This is a complicated function with integration limits depending on r(vac). 
Evaluation of J is feasible for a constant r(vac). The result is graphed in Fig. 4. 
For relatively small values of r(vac), J grows nearly exponentially over several 
orders of magnitude. Another feasible form of r(vac) is

( )( )vac .i ir r r=  (51)

Since this is a single function, we do not obtain a curve but a single value 
for J in this case:

2

0 0

152 .
27 4

e ZJ
a

=
π  

(52)

Fig. 3. Vacuum interaction radius r(vac) for H 1s and He 1s orbitals.



Graphical Results for Hydrogen and Helium 533

Again this value is much greater than the original value of Eq. (20):

2

0 0

5 .
8 4

e ZJ
a

=
π  

 (53)

These results indicate that the interaction of atoms with the quantum back ground 
of spacetime has an enormous potential. The interaction should be exploitable 
via spin connection resonance in order to deliver energy from spacetime.
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