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Abstract

Circular diffusion in & multiple cosine potential-energy well produces
peaks in the far infra-red power absorption coefficient as the rate of
escape from these wells becomes slow. The Kramers equation governing
the dynamics of the system s solved using matrix inversion methods. The
dependence of the number, relative intensity and frequency of the far
infra-red peaks on matrix size is illustrated, and numerical results are
shown describing the development with decreasing rate of escape of far
inira-red peaks. The complete dielectric loss profile is shown to be &
broad band of constant half-width 1.12 decades at low frequency, super-
imposed on which are the high frequency far infra-red peaks. The far
infra-red power absorption spectrum in the deterministic limit of well-
known models corresponding to the first three approximants of the
linear Mori continued fraction expansion of the Liouville eguation is
shown to be composed of delts functions at well-defined frequencies.
The number of delta functions increases with approximate order (i.e.
number of continued fractions).

These theoretical results are discussed in terms of the recemt experi-
mental discovery by G. J. Evans of peaks in the far infra-red power
absorption of dipolar and non-dipolar molecular liguids, and in terms
of the recent suggestion by Grigolini and co-workers of a phase change in
the low friction limit caused by detersninistic transition to chaos.

Introduction

The first description of rotational diffusion was given, effec-
tively, in terms of a rotational Langevin equation. In three
dimensions this is a technically difficult problem {1], and for
this reason a simple and clear solution is sought in terms of the
equation:

15 (@) +180(2) = w() )

where the rotation of the asymmetric top is confined to a plane.
I is the effective moment of inertia associated with this motion,
@ the angular displacement at the instant 7, § the rotational
friction coefficient and w a Wiener process. Eqn. (1) provides
the autocorrelation functions: ‘

() 6(0)) = e Bt

kT @
{cos 6(1) cos 8(0)) = exp [-—F'a [t —1+e7 5] ]}
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If it is assumed in eq. (1) that:

0]
8> 1) 3)
i.e. the “high friction™ limit, then egns. (2) produce:
(cos 8(t) cos 6(0)) = exp [— %‘r] . 4)

In this limit we can define the so-called Debye relaxation time
as:
- BB

Tp = kT . (5)

Cumbersome solutions for the three dimensional diffusion of
the asymmetric top from eqn. (1) have recently become avail-
able, but add little physical insight, if any.

This simple *“‘one-particle” model has many short-comings,
which have been documented. The need to account for “liquid
structure’” is probably the most obvious of these, and in this
context the following modification has been proposed:

8@+ 18 (1) + V'(0) = w(r)
= — Vg cos (mé(r))

(6)
M

and soived by Reid [2] by transforming into the Kramers
equation:

ot o6 I a6 @)

for the conditional probability density function
p(6,8,116(0),6(0), 0).

The solution by Reid is much more transparent than others
in the literature and opens up several new possibilities in the
field of Langevin dynamics. This paper explores the case §— 0,
the opposite to the “high friction™ limit mentioned already. In
the limit 8 = O it has been shown recently [3] that the rate of
escape from the potential wells defined by eqn. (7) becomes
very low, and that this rate of escape becomes proportional to
Bitself. When $ = 0 eqn. (6) reduces to the deterministic result:



' B+ v'e =o.

)

Furthermore, if the temperature is very low, the motion is
confined to the hattom of the potential well, and:

sinmé *= mé, Q0)
so that eqn. (%) gives the familiar Hooke's law:
1B+ Vom?8 = 0. (1)

In this respect eqn. (6) is profoundly different from eqgn. (1),
although superficially similar in appearance. There is no way of
obtaining Hooke’s law from egn. (1). The link between the
modified Langevin equation (6) and Hooke’s law [eqn. (11)] is
an important one, for it provides a route from liquid state
molecular dynamics to the dynamics of molecular crystals. It
is well.known [4] that the harmonic approximation feqn. (11)]
forms the basis for the available descriptions of the far infra-red
lattice modes of crystalline solids. Eqn. (11} would describe the
elementary oscillatory motion giving rise to ome rotational
lattice mode — a delta function of frequency. In contrast, Reid
[2] has shown clearly that eqn. (6) produces for the far infra-
red power absorption coefficient a broad band for the relatively
high values of B given in his paper [see Fig. (3)].

It follows naturally from these considerations that the
transition from eqn. (6} to eqn. (11) describes the phase tran-
sition from molecular liquid to molecular crystal. This apparently
obvious and superficial remark has profound implications for
the theory of Langevin dynamics, because such a phase change
must be generated by the simple process:

8—0. (12)

This means that solutions of eqn. (6) for molecular dynamics
must produce lattice modes in the ‘low-friction’ limit. It follows
that there is no fundamental difference between liquid and
crystal dynamics in the framework of the modified Langevin
equations and the equivalent Kramers equation (8).

This paper solves eqn. (8) in the limit § = O for various types
of potential ¥, and for the parameters defined by Reid [2}:

_ kT 2

a= (7) (13
__ Yo

T =y (9

The product ay = V2] is therefore a measure of the well
depth in terms of the molecular moment of inertia /. In this
paper ay > 8 so that the rate of escape is low from relatively
deep potential wells.

Numerical Solution of Eqn. (8)
Eqn. (8) can be written as:
mA(s) = 4(0). (15)

The square matrix m is an asymmeiric complex, banded tri-
diagonal, which must be inverted for the column vector A(s),
where s is the Laplace variable. The column vector A(0) is the
vector of initial values, arranged in the order:

.. A4%,(0),4%,,1(0), ..., 43(0), ..., 47,(0),42(0), .. .;
o AL(0), AL, (0), ..., A}(0), ..., A7 ,(0), 4:(0), .. .;
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and so on from top to bottom of the column A(D).

The structure of the matrix m is given in Table 1, for a
potential of the type:
V = — Vg cos (26(1)). (16)
The matrix m has the interesting and useful property illustrated
in Table 2 for a potential of the more general type:

V = — Vo(cos 8() + cos 20(1) + cos 30(f) + cos 40(H) + . . ).
‘ an

Table 2 shows that adding terms to eqn. (16) has the eifect of
broadening a one diagonal band of the tri-diagonal matrix m.
The overall structure of eqn. (15) therefore remains unchanged
for the most general type of potential ¥, which can always by
synthesised from a Fourier series expansion such as eqn. (17)
provided this converges. Substituting eqn. (17) in eqn. (9)
produces the result:

T+ Vo(sin8() + 2sin20(1) + 3sin 30() + . . .

+MsinMI(D+..)=0 (18)
Eqn. (18) is a non-linear, deterministic differential equation in
8, describing the elementary (one-molecule) oscillstions of
crystal dynamics. It is clear from inspection of eqn. (18) that
there are as many delta functions in the far infrared spectrum
from eqn. (18) as there are terms in the Fourier series, plus
cross terms, difference frequencies, overtones and so on.
Looked upon in another way, m eigen frequencies in the far
infra-red are generated by inverting the matrix m illustrated in
Table 2 in the limit 8> 0.

The far infra-red power absorption coefficient is given [2]
by:

a(w) = w? [A3(1) + 42, (D) (19
subject to the thermodynamic equilibrium initial conditions:

(605 0(0) 420D = 3- | cos 8(0) cos 0 (0)

X exp [2(1) ) cosMG(O)] d6(0)
alnM

——;—ﬂ j_’;sin 8(0) cos r6 (0)

xexp[z(l)z cosMa(O)}dO(O) (20)
af M

In this paper egn. (15) is solved using the algorithm written
by Reid [2], and also with a new algorithm written by M. W.
Evans to incorporate potentials of the general type exemplified
by eqn. (17). The latter algorithm inverts m by Crout factoriz-
ation and partial pivotting, with extended precision arithmetic
for the inner products on the CDC 7600 and CDC Cyber 205
computers of UMR.C.C., using the Numerical Algorithm
Group’s routine FO4ADF. This algorithm was implemented in
an efficiently vectorized form on the Cyber 205 with Pacific
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Centre Integral Behaviour , a=10,B=0.1,y=5
g
+ +
9.8 |
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0.2
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12 4 10+ 8t 4 -4 -2 ) 2 4 & T 8 <+ 10 + 12
r
Fig. I. Centre integral behaviour for —12<r <12, Ordinate:
<cos #{0) AS(0)). Abscissa: r. The parameters are a = 10.0THz; g =
0.1 THz;y = 5.0 THz.
Sierra Research Incorporated’s V.AST. utility. This enabled (i) 100 x 100;
the inversion of a 1000 x 1000 complex matrix m in under (ii) 200 x 200;
200secs C.P.U. Cyber time. The integrals in eqn. (20) were (iii) 400 x 400,
evaluated using the N.A.G. routine DO1GAF. The precision (iv) 1000 x 1000.

of these integrations was checked by this routine for every
integral, and also by using the fact that the complex part of
eqn. (20) should vanish by symmetry. In respect of initial
conditions it is important to note the relation:

(cos 0(0)A*(0)) = 0; m # 0, (21
so that only the fifty or so centre integrals of the type (20) need
1o be evaluated in the column vector 4(0).

Convergence effects and numerical artifacts

It is clear from inspection of egns. (11) or (17) that in the limit
-0 peaks will appear in the far infra-red power absorption
from modified Langevin equations and their equivalent Kramers
equations. However, great care must be taken in calculating
a(w) of eqn. (19) by inversion of m, especially in the limit
~ B 0. Reid has discussed [2] the convergence of eqn. (15) for
relatively high values of §, where the far infra-red spectra is a
broad band. in this section the behaviour of the Crout factor-
isation algorithm is reported for complex matrices m of the
following dimensions:
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The dimensionality of matrix m (see Table 1) is defined by
the product INCMAX (2NC + 1), where NC defines the number
of centre integrals A3, (0) either side of A3(0). The behaviour
of the A2(0) coefficients depends on the ratio y/«. Convergence
is much more rapid when this ratio is less than one. For a =
10.0 THz; ¥ = 5.0 THz the convergence behaviour as a function
of r is illustrated in Fig. (1). Centre integral behaviour is inde-
pendent of 8, and, for V' = — ¥, cos 26(t), Fig. (1) shows that
the terms A2, (0), A3 5(0) and A 4(0) dominate. The numerical
integration produces within the uncertainty perfectly sym-
metrical results, i.e. A3(0) = A2, (0); 43(0) = A%,(0); A2(0) =
A%(0). (It is interesting to speculate in this context a one to
one correspondence between the number of significant centre
integrals and number of significant peaks in the final far infra-
red spectrum.) At 7 = 0, the uncertainty in the numerical inte-
gration is 2.9 x 107%, and at r=* 12 itis 1.6 x 107, The value
of the second integralin eqn. (20)is <107 forall — 12 <r < 12,
with an uncertainty for all 7 of <2 x 107%. These resuits were
obtained with 100 quadrature input mesh points per integrat.
The value of 7 was used with machine precision with N.A.G.
XO01AAF.

The parameter INCMAX defines how many blocks of the
type illustrated in Tables 1 and 2 are used to build up m, which
is always a square matrix.



' . The numerical method is based on the assumption [2] that
\ the solution-of eqn-(8) takes the general form:

ool ot

where D, are modified Hermite polynomials — the Weber
polynomiials and ¢,,(&, ¢} are expanded in a Fourier series:

$a(6,0) = ;.A;(ﬂjxp.ﬁpﬂ)

(22)

23)

(p=0, z1,...,t%}). The parameter INCMAX therefore has
the effect of truncating the series ¢,(8, 1) of eqn. (23). It is also
clear from the structure of Tables (1) and (2) that the values
chosen for NC and INCMAX determine the level of truncation
in eqn. (23).

The numerical results show that for any reasonasble size
of matrix m sensible results are obtained as § 0 from an
expansion of the type (22) only if the ratio y/a does not exceed
approximately two. If this ratio becomes too high the far infra-
red power absorption a(w) from eqn. (19} starts to show
unphysical negative regions from both algorithms — the Reid
method and Crout factorisation. This suggests that in this case

o T T T
30#— , —
| 100 ‘%
20— —
10— -]
0 100 cm? 200
f I
15— —
2002
5 J |
0 L M
0 100 cm™ 200

Fig. 2. Convergence of the far infra-red power absorption spectrum for
a, 8 and v of Fig. (1). (a) m = 100 X 100; (b) m = 200 X 200; (c) m =
400 x 400; {d) m = 1000 X 1000; (e) the same spectrum from Reid’s
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the series (22) and (23) need many ferms to converge, if they
converge at all. This problem can be surmounted by using

y/a <1, even for very small m (of the order 100 x 100).

The question now arises of how the peaks in the far infra-red
power absorption coefficient depend on the size of the matrix
m. The numerical results given in this section attempt to answer-
this question for NC = 12, and for various values of INCMAX,
i.e. blocks of the type illustrated in Tables I and 2. The par-
ameters employed are a = 10THz, 8 = 0.1 THz; ¥ = 5 THz, for
a potential of the type ¥ = — ¥, cos 28(r). (For 40 blocks the
matrix size is 1000 x 1000.)

For INCMAX = 4 (4 blocks) three major peaks appear in the
far infra-red spectrum from eqn. (8), or equivalently, eqn. (6).
These are illustrated in Fig.2(a). There is a further very small
peak at 206cm™!. The matrix size is now 100 x 100. With
INCMAX = 8 (200 x 100 matrix), there are five peaks visible in
Fig. 2(b), whose positions and relative intensities have changed
relative to Fig. 2(a). In Fig. 2(c), INCMAX = 16 (400 x 400
matrix), and five major peaks are visible. The two peaks at
118cm™ and 180cm™ stay roughly in the same position, those
at 10cm™ and S1cm™? shift slightly to higher frequency. The
obvious difference between Fig. 2(b) and Fig. 2(c) is the greatly
diminished height of the peak at 146cm™ (m =200 x 200).

! | i
15~ —
2
400
10— i
5— —]
0 A A
0 100 cmt 200
= ‘.0, £=0.05, y=5,N=2
NCIO]»
1200 b
il

algorithm, for a=10.0THz; #=00STHz; v=S5.0THz. Ordinate:
power absorption.
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Ths-has-sh&itsd—towa;dsthe 118 cm™! peak, which has increased
in"Intensity a litte and has stayed at the same frequency. The
matsix-m-now-centains-one Rundred times more elements than
usgll in the production of Fig. 2(a), and it is possible to invert
it only—on-a-fast-veetor-processor-such as the CDC Cyber 205.
(The memory limit of the CDC 7600 is exceeded at m = 200 x
200, being-then-some 7-times slower-than the Cyber 205).

The results from Fig. 2(c) can be compared with those from
Rild’s algorithm for the-same-parameters-a, f and v (Fig. 2(d)).
The Reid algorithm is structured wholly differently, but is
written [2] for potentials of the type ¥V =— ¥V, cos 2mé(t)
only. By making use of symmetry Reid has reduced the size of
the matrix needed to obtain the far infra-red spectrum. His
equivalent of matrix m need not be square, and for a rectangular
Reid matrix containing the equivalent of 300 r terms and 6
blocks of the type described in his paper we obtain Fig. 2(d).

Experimental results and discussion

Kramers equations of the type (6) are now known [5] to be
applicable in many fields of physics, astronomy and population
genetics. The f—>0 behaviour of such equations can, for
example, be used [6] to describe the recently discovered [7]
phenomenon of resonance activation of Josephson junctions by
microwave irradiation. The peaks illustrated in Fig. (2) corre-
spond {8} to specific phase angle fluctuation phenomena when
the dissipation rate becomes very low, even in the complete
absence of irradiation .

In the field of molecular dynamics, G. J. Evans [9} has
recently reported the appearance of peaks in the far infra-red
power absorption of a range of molecular liquids. The appear-
ance of these peaks in liquid water has also been reported by
Stanevich et al. [10}, and has been corroborated by G. J. Evans
and Nicolet Instruments Ltd. with an independent interfero-
metric method [11}. The three independent observations of the
water peaks are summarized in Table 3. Stanevich et al. [10}
used a grating spectrometer, and G. J. Evans {11} used (i) an
N.P.L./Grubb—Parsons interferometer; (ii) the independent
Nicolet interferometer. It seems very unlikely, therefore, that
these peaks are artifacts of the observational method. In the
context of this paper it is also significant that liquid water is
well known to be hydrogen-bonded [51, so that rates of escape
from intermolecular potential wells are expected to be slowed
by this binding of the molecules. As discussed already this
implies that B is small, because the rate of escape from the
Kramers equation in this limit becomes proportional {3, 5} to .

Table 11}. Liguid water: Far Infra-red peaks with different
instruments (T}cm™t)

Stanevich and
Yaroslavskii { 10} G. 1. Evans [9, 11] G.I.Evans [11]
(Grating (Grubb/Parsons-Cube (Nicolet Instruments
Spectrometer) Interferometer) Ltd. Interferometer)
160 162 161.0

- 165 162.0
173 . 178 1735
191 188 191.0

- 197 198.0
210 210 210.0

- ‘ out of 221.0
232 range 2330
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If we make a rough, order of magnitude, estimate of the
parameter a for water, we have J = 2 x 107* gm cm?, so that at
300K, a+ 15.0THz. A value of 0.1 THz for the parameter §
means, very. roughly speaking, an escape every 10ps or so, i.e., 2
H-bond is broken and reformed, on the average, in this interval
of time. This is a simplistic picture, but nevertheless acceptable
as a rough description of what happens to an individual water
molecule on the picosecond time-scale with which we are
concerned. It is clear from Figs. (2) that «, § and 7 of this order
produce several far infra-red peaks, even for a potential ¥ = —
Vo cos 268(2) which is Anown to be far too simple for water. We
have already mentioned how more realistic intermolecular
potential can be obtained by Fourier synthesis, and how each
term in the Fourier sum generates more peaks in the far infra-
red spectrum. The Kramers equation is therefore fully capable
of generating all the peaks listed in Table 3. It is probabie that
further observation will reveal yet more far infra-red peaks in
liquid water. Matching these peaks to the appropriate Fourier
series will provide information on the effective intermolecular
potential and its spatial symmetry projected on to the plane of
rotation (i.e. the “orbit” described by the angle 8). With
computer simulation of Langevin dynamics, three dimensional
analyses should be feasible.

In this context, the use of parameters equivalent to a=
15.0THz, § = 0.1 THz provides a2 new and simple explanation
for the observed dielectric loss peak of liquid water, which
occurs in the MHz—GHz range of frequencies. These parameters
in eqn. (6) produce a broad dielectric loss curve (see Fig. (4))
precisely in this frequency range, even though the moment of
inertia used, 1 =2 % 10"%gmem?, is that of a single water
molecule. It is basically important to realize that eqn. (6) is
therefore capable of reproducing two apparently quite different
experimental aspects of liquid water molecular dynamics self-
consistently and simply by using the limit § ~ 0. In other words,
eqn. (6) describes both the observed (Debye type) dielectric loss
[5] and far infra-red peaks in the limit § > Q.

Peaks have now been reported by G. J. Evans [9, 11} in
several other dipolar and non-dipolar molecular liquids, including
chlorobenzene, bromobenzene and benzene, where the positions
of the lattice modes in the equivalent molecular crystals are
well.known. These results await corroboration, but it is clear
that the liquid state peaks occur closely in the vicinity of the
crystal lattice modes. The agreement is particularly striking for
chlorobenzene and benzene. There seem to be more peaks in
the molecular liquid than in the corresponding crystal. This
pattern is repeated for chloroform, deuterated chloroform,
acetone, the (—) enantioner and racemic mixture of 2 chloro—
butane, carbon tetrachloride, nitromethane, acetonitrile, and, of
course, liquid water, where the liquid peaks (Table 3), are far
more numerous than the lattice modes of ice at 1 bar just below
the melting point [5]. These observations can be explained
quite straightforwardly in terms of the symmetry of a sum such
as eqn. (17). The greater the number of terms the lower the
effective symmetry, and the more the number of far infra-red
peaks. The effective symmetry in the liquid is known to be less
than that in the crystalline solid, although recent diffraction
studies {12} imply that the difference in local order is far
smaller than expected. Similar conclusions come from the
computer simulations of Rahman [13} on atomic liquids.

Some numerical results from Eqn. (6}
Figure (3) illustrates the development of peaks from Reid’s
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a=8, 3<f, 2, 7= 10,#:2

Rio) -

a=8,8=0.1,y=10,N=2

ol

=8,8=0.05, y=10, N=2

F50
]

R {a}

0 }

o

fso 20 20 300 30 +00

S0 100

v

Fig. 3. Development of structure in the far infra-red power absorption
from Reid’s algorithm: « = 8.0THz; v = 10.0THz; (3) §=50.0THz;
(b) 8 =10.0THz; (c) g =5.0THz; (d) § = 1.0THz; (¢) 8 = 0.5 THz; ()
8 =0.03 THz; (g) g = 0.2THz; (b) 8 = 0.1 THz; () 8 = 0.05 THz. These
spectra are computed with Reid's parameters®: mm =6, mp = 30.
Ordinste: power absarption.
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algorithm [2] as § —+ 0. The parameters are: @ = 10.0THz, f =
0.1 THz and 7 = 8.0 THz, and the potential ¥ =— ¥, cos 28(¢).
Some of the equivalent loss curves are illustrated in Fig. (4).
Figures (4) show clearly that the complete loss profile from
eqn. (6) is @ low frequency broad band together with a series of
peaks in the far infra-red. It is important in the light of Fig. (2)
to estimate how many of these peaks are likely to be present for
an effectively infinite matrix m, when convergence has been
attained. In this context it is known [2] that convergence is
more rapid the larger the parameter 8. It seems safe to assume
therefore that the peaks, when first resolved in Fig. 3(d), for
= 1.0THz, have come from a converged solution. Again, for a
potential ¥V =— ¥, cos 28(r), there are five visible peaks in
Fig. 3(d) as for the larger matrices in Fig. (2). As f is lowered
from 1.0 to 0.5 THz further peaks are resolved (Fig. 3(e)), but
thereafter the number does not increase. Nine peaks only
remain at §=0.05THz (Fig. 3(i)), at exactly the same fre-
quencies as with 8 = 0.5 THz. For a given matrix size, therefore,
there is no dependence on § of the number of peaks in the
spectrum.

The dependence of the number of peaks on the size of m is
illustrated in Fig. (2) and has also been investigated recently by
P. Grigolini and co-workers [14], who came to the important
conclusion that in the low friction limit the deterministic
character of the system becomes dominant. For a potential
of the type ¥V = — ¥V, cos @(f) at low temperature, so that only
the first two terms in the McLaurin expansion of cos 8(¢) are
retained the so-called Duffing oscillator, two peaks appear for
an effectively infinite matrix m. These are aiso described by
Voigtlaender and Risken [15], who claim that their numerical
results agree with the deterministic limit § > O calculated using
an independent analytical method. The same two peak fre-
quencies are observed by Grifolini and co-workers [14] using &
continued fraction method, but the use of analogue circuit
simulation [5] suggests the presence of a residual linewidth, and
importantly, a phase transition to deterministic chaos as § —+ 0.
Voigtlsender and Risken {15}, on the other hand, argue that
the peaks survive unmasked by deterministic chaos even for § as
low as 001 for precisely the same system as described by
Grigolini et al. [14].

The question of how many peaks survive for an infinite
matrix m is therefore a matter for further investigation and is of
great interest. In our opinion the peaks in Figs. (2—4) are real,
although some may diminish in intensity (see Fig. (2)) or shift
in frequency as m is increased. One of the many interesting
consequences of this work is that seemingly deterministic
equations such as (17) show the phenomenon of so-called
“transition to chaos”, i.e. the trajectories defined by such
equations become exceedingly complicated [16]. “Coupled
pendulum” equations are wellknown to show deterministic
transition to chaos, a type of phase transition.

To end this discussion we look at two simple linear models,
and provide a simple proof that more than one peak must exist
in the far infra-red as the friction coefficient § vanishes. This
proof is independent of the considerations by Grigolini et al.
[14] and by Voigtlsender and Risken [15}.

The harmonic oscillator [ 1, 2}

This is eqn. (6} in the limit sin 8 (f) = @(z), i.e.:

TE@)+ 188 () + m*Vo8 = w (1) 29
i.e. Hooke's law perturbed with friction and noise. If we write:
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a=8,8=0.2, y=10,N=2

Dielectric Loss

a=8,B=0. 1, y=10, N=2
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Fig. 4. As for Fig. (3), dielectric loss a = 8.0 THz, y = 10.0 THz; (a) 8 =
50.0THz; (b) $=1.0THz; (c) 8=0.5THz; (d) 8=0.2THz; (¢) B =
0.1 THz. Note that the complete dielectric loss spectrum is a broad band
of constant half-width at low frequencies, with a series of peaks develop-
ing on the high frequency side (in the far infra-red range). Abscissa:
(log 10 (w) —12).

3
wi =T Yo (25)

I
eqn. (24) is well-known [2] to provide the following resuits:
B8P = e [cos (915) +£ g (E)] (26)

2 ﬂl 2 3
for underdamped motion. Here:
ﬂz 172

B =2 (wé—;) . @n
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In eqn. (26), the term-on the Lh.s., (§ () 6 (0)), is the equilibrium,
theymodynamieally -averaged, angular velocity correlation
fugction, whose Fourder-transform is therefore a spectrum in
the usual way. In the limit § = 0 eqn. (26) gives:

GO Bt
BOBON B0 > 2

The angular velocity spectrum is-therefore two delta functions
(i.e. an infinitely sharp peak) at the frequencies  wo(=8,/2). In
the limit § = 0, on the other hand, it is more instructive to look
directly at the analytical Fourier transform of eqn. (26) i.e., the
complete spectrum. In this respect it is necessary to consider
0 <r< oo so that the single-sided Fourier transform is defined
as:

(28)

R LCIOLIOY

= Bl -iw Bt B . Bt
joeﬂurei ‘(cos%-+asm%)dt

2 (Bl+B)2
—of #(3ee)

LBl _®2-p Bi/2+8
28, |\ F+8./2 ) B +(B:i/2+6Y

o)
e -]
29

The complete analytical spectrum from eqn. (24) therefore
consists of several peaks. In the range of physical interest, i.e.
0< w <o, there are three peaks in the real part of eqn. (29).
One of these is situated at w, = §,/2, and is a positive peak of
approximate height + 1/28 and half width f. As g0 this
therefore becomes the delta function mentioned already. How-
ever, there are two more peaks for finite § whose intensities are
proportional to §/8, for all w > 0. These disappear if and only
if B vanishes (i.e. = 0). The approximate heights of these peaks
are+ 1/4p8, with half width §; and they are situated at (8;/2 £ ).
In the simple linear case of eqn. (24) the three peaks in the
limit B— O therefore happen to be situated at the same fre-
quency . In the non-linear case thlsmxghtwellnolongerbeso

)]
ﬁ'+(-2—

The linear itinerant oscillator

This is well-known to be the next approximant [S] of the same
linear Mori continued fraction [17] which generates the har-
monic oscillator. The angular velocity a.c.f. in this case can be

" written as:

b0y e
00 ()

%1t cos w;t (ol )e'“l'sinw,t

1+A wy 1+A
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e~ 0zt

+ (2) Ae~ %% sin w,t LA

The complete Fourier transform of eqn. (30) therefore consists,

on the positive frequency side, of several peaks defined as

follows,

(i) A Lorentzian centred at the frequency origin (w = 0) of
height A(1 + A) ™} 63! and half-width 0,.

(ii) A Lorentzian centred at +w,; of height + ¥(1 + A) 'a7"
and half-width o,.

(iii) Positive and negative peaks at w,; ¥ 0, respectively, of
approximate height (or depth)

Gy,
Wy 40](] +A) )

(iv) Positive and negative peaks at w,; ¥ 0, respectively, of
approximate height (or depth)

G).__A
W) 401(1 +A).

The low friction limit of the linear itinerant oscillator, eqn.
(30), means that both 0, and o, tend to zero. When 6, =0, =0
we recover the deterministic spectrum, which consists of two
delta functions, one at the origin (w = 0) and one at w = w,.
(In this respect note that the deterministic angular velocity
spectrum from the zeroth linear Mori approximant, egn. (1), is
a single delta function at w = 0.)

In summary, therefore, the deterministic spectra from the
linear Mori continued fraction consist of delta functions. For
approximant zero feqn. (1)] there is one delta function at the
origin. For approximant one [eqn. (24)] there is one delta
function at w =f,/2. For approximant two (eqn. (30)] there
are two delta functions: one at w =0 and one at w = w;,. In
general it is known that the angular velocity correlation func-
tion from the linear Mori continued fraction is an infinite sum
of complex exponentials. This leads to the conclusion that the
deterministic angular velocity spectrum from high order linear
Mori approximants [18] will consist of a large number of delta
functions (see appendix). Therefore, in the linear case, peaks are
expected in the far infra-red power absorption in the low
friction Limit.

Grigolini et al. [14] have, however, just made the important
discovery that when the analysis is extended to the non-linear
case, the deferministic trajectories themselves become so
intricately complicated [16] that some, but not all of these
delta functions may be masked by a residual uncertainty (ie.
linewidth) and, at a well-defined value of the friction coefficient,
are suddenly shifted in frequency because of the sudden onset
of “deterministic chaos”. Grigolini et al. [14] have therefore
discovered a fundamentally new phenomenon of deterministic
physics in the low friction limit .
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Appendix
It has been shown [18] that the angular velocity a.c.f. from the
third linear Mori approximant takes on three general forms, i.e.:

C(®) = %%pe ' cos Byt + Ox, e 1 tsin §, ¢

+ %, e"%f cos By 1 + Oxy €% fsin B¢ (A1)
where the x coefficients can be described in terms of the roots:
(o1 +iBy), (@1 —iBy), (@2 + iB,), and (a; —iB,); or:

Clt) = 'xy e+ 1x, 67 + 1x; 67 cos Bat

+ Ix,e” %t sin far (A2)
or

4
@ = }; Dy exp (—ay1). (A3)

In the deterministic limit eqn. (A1) provides two distinct peaks;
two delta functions at w =g, and w = ;. Eqn. (A2) provides
three peaks, two delta functions superimposed at the origin,
(w =0), and another at w = w,. Eqn. (A3) provides four delta
Junctions, superimposed at w = 0. ‘

This argument can be extended 10 higher approximants.
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